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Abstract

Recently, we presented a framework for understanding protein structure based on

the idea that simple constructs of holding hands or touching of objects can be used

to rationalize the common characteristics of globular proteins. We developed a con-

sistent approach for understanding the formation of the two key common building

blocks of helices and sheets as well as the compatible assembly of secondary struc-

tures into the tertiary structure through the notion of poking pairwise interactions.

Here we benchmark our predictions with a detailed analysis of structural data of over

4000 proteins from the Protein Data Bank. We also present the results of detailed

computer simulations of a simplified model demonstrating a pre-sculpted free energy

landscape, determined by geometry and symmetry, comprising numerous minima

corresponding to putative native state structures. We explore the consequences of

our model. Our results suggest that symmetry and geometry are a powerful guide to

capture the simplicity underlying protein complexity.
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1 | INTRODUCTION

In a recent paper,1 we modeled the backbone of a protein as a

chain of Cα atoms with a constant bond length b of approximately

3.81 Å, informed by empirical data.2 The conformation of a chain of

constant bond length is completely specified by the bond bending

angle θ at each interior location i, the angle subtended by two suc-

cessive bonds between (i � 1,i) and (i,i + 1), and the dihedral angle

μ (the angle between the two planes formed by two sets of three

successive points [(i � 2), (i � 1),i] and [(i � 1),i,(i + 1)]. Our aim in

our earlier paper was to introduce a well-defined and simple model

based on geometry that yielded ground states like those of pro-

teins. We presented some preliminary results which showed rea-

sonable accord between geometry and chemistry. We have three

goals here. First, we carefully assess the validity of several predic-

tions of the geometrical model by comparing with data from over

4000 native state structures in the PDB. These predictions include

backbone related quantities including the tube/coin diameter, the

threshold bond bending angle and numerous constraints pertaining

to the relative placement of touching Kepler coins in both a helix

and a sheet. Second, to elucidate the nature of the assembly of the

tertiary structure, we present the results of detailed computer
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simulations of a simplified model, without sidechains, but with

effective pairwise attraction of a special kind. We present a gallery

of nearly degenerate 36 conformations spanning the topologies of

commonly observed proteins. And third, we present a brief discus-

sion of some of the consequences of our work. While any model is

necessarily wrong, we hope that our model may yet be useful to

guide our understanding of proteins, the vital molecules in living

cells.

A key concept of our analysis1 was the notion of poking pairwise

interactions (Figure 1) between Cα atoms i and j, located at ri and rj

respectively, satisfying the distance, d, criteria:

d i, jð Þ< d i, j�1ð Þ
d i, jð Þ< d i, jþ1ð Þ
d i, jð Þ< d i�1, jð Þ
d i, jð Þ< d iþ1, jð Þ

ð1Þ

In other words, poking contacts are special in that a given site i is

closer to j than it is to its neighbors j + 1 and j � 1 and likewise for

site j—two parts of a chain poke towards each other. We will briefly

consider one-way poking contacts later in the paper where not all four

equations are satisfied but just the top two or the bottom two equa-

tions. The building blocks of both helices and sheets arise from the

presence of such contacts along with distance and angular constraints

linking them and correspond to Kepler-like touching of coins sitting at

the Cα locations. These constraints are readily deduced for the simple

case of interactions driven by backbone atoms, which are common to

all proteins.

For the assembly process of the secondary motifs into the tertiary

structure, heterogeneous sidechains are involved in the contacts, and

touching entails non-uniform objects with imperfectly known geome-

tries coming together and nestling with each other. We suggested1

that the complex many-body interaction of multiple sidechain atoms

nestling together and expelling the water from the hydrophobic core

can be approximately captured by means of additive poking pairwise

interactions within a specific range and which are not involved in

building block formation. A poking contact plays an essential role

in both helix and sheet formation, and it is the simplest emergent pair-

wise interaction that one may postulate when there is little specific

knowledge.1

We considered the consequences of a constructive hypothesis

that the common building blocks of protein native state conforma-

tions satisfy certain Kepler symmetry constraints. Because of chain

tethering, one ought to consider the objects tethered along the

chain not as isotropic spheres but, in the simplest case, as two coins.

This is because of a special tangent direction at each site. For a helix,

the normal directions of the two coins at a given site indicate the

directions from the site to its nearest neighbors (Figure 2B). A strand

is associated with two parallel straight axes, one going through

(i � 2,i,i + 2) and the other going through (i � 1,Mi,i + 1), where Mi is

the mid-point of (i � 1) and (i + 1). We suggested that the two axes

associated with the i-th Cα atom are represented by one coin at site

i and the other rigidly translated to Mi (Figure 3A,B). All backbone

coins are taken to have a constant radius Δ, equal to the radius of cur-

vature of the Kepler helix.1

F IGURE 1 Illustration of two pieces of a chain showing a poking
pairwise contact between i and j. i is closer to j than to j + 1 or j � 1.
Likewise, j is closer to i than it is to i � 1 or i + 1.

F IGURE 2 (A) Continuous helix defined by two dimensionless
ratios η = P/(2πR) and Δ/R = 1 + η2, P and R are the helix pitch and
radius. The tube (coin) radius is denoted as Δ. The helical curve is
shown in green. The three cyan points along the helical curve are
separated by successive turn angles of t* � 302.5� and, unlike in the
discrete helix, each is associated with just one cyan coin having a
dimensionless radius Δ/R. This is because the directions from point
i to both its neighbors along the helix coincide in the continuum limit.
The coin in the middle, just touches the other two coins with the
distance between coin centers being exactly equal to 2Δ/R. Also, the
straight line that connects successive cyan points is perpendicular to
the tangent of the helical curve at those points. These geometrical
conditions satisfy the Kepler touching condition. (B) Kepler helix
having bond length b. For a discrete chain, there are now two distinct
coins at site i (in orange and in purple). This is because the (i � 1,i) and
the (i,i + 1) directions do not coincide any longer. The figure shows
one of two coins at sites i � 3 (in purple) and i + 3 (in orange). These
two just touch the two coins at bead i. The pair of orange coins touch
each other as do the pair of purple coins. The distances of 2Δ (the

coin diameter) and the angles of 90� characterizing the geometrical
conditions of touching are indicated. Every pair of non-contiguous
coins that do not touch is farther than 2Δ from each other and
therefore cannot intersect. (i,i + 3) is a poking contact because i is
closer to i + 3 than it is to i + 2 and i + 4, and i + 3 is closer to i than
it is to i � 1 and i + 1. The same logic can also be applied to the
formation of sheets (Figure 3A,B).
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We sought building block conformations1 in which pairs of coins

just touched each other edge on edge or held hands in a systematic

manner with the right geometrical constraints. This requirement was

met perfectly in two systematic chain geometries (Figures 2B and

3A,B)—a Kepler helix with the two coins at i just touching one coin

each at (i ± 3) and two possible arrangements of zig–zag strands in

phase and tracking each other in a Kepler sheet. The two Kepler

sheets correspond to parallel and antiparallel strands with separation

between the pairing axes of neighboring strands being 2Δ.

Our theory1 predicts that for a bond length of around 3.81 Å, the

Kepler helix has a coin radius Δ of around 2.63 Å. Furthermore, steric

constraints dictate that the bond bending angle of the chain is nomi-

nally larger than θmin around 87.3�. In the continuum limit, our model

becomes a tube of non-zero radius Δ. The non-zero Δ provides the

space to fit in the atoms of the backbone atoms within the tube.

Figure 2A depicts the arrangement of coins, each having a radius

Δ, in a continuous helix.3 The continuum approximation does not pick

out a characteristic length scale because the bond length approaches

zero in this limit. Here we have, for consistency, chosen the contin-

uum tube to have a radius Δ = 2.63 Å to match that of the discrete

Kepler helix (Figure 2B). In the continuum case, the central coin in the

figure just touches two other coins. In contrast, in the discrete case,

there are two central coins, each just touching one other coin. The

continuous and discrete helices turn out to have virtually the same,

though not identical, geometries measured by the pitch to radius ratio

P/(2πR) � 0.4. Here P is the pitch of the helix and R its radius.

One must recognize that Kepler chain conformations may have

nothing to do with protein structures. Kepler's handholding and pok-

ing and nestling are geometrical schemes, which can be studied sim-

ply. Because of the venerable history in the protein field, dating back

to Pauling,4,5 Ramachandran,6 Richards,7–9 and Rose10–13 of packing

and space-filling, one may hope that Kepler structures resemble pro-

tein structures. This was also seen in earlier work on the optimal

shapes of compact strings more than two decades ago.3 Unlike in a

protein, where there are myriad interactions, including steric con-

straints, covalent bonding, hydrogen bonding, dipolar interactions, van

der Waals forces, electrostatics, and hydrophobicity,14–17 the Kepler

model is ultra-simple. Here we carry out detailed comparisons

between the predictions of theory and empirical data from the build-

ing blocks of over 4000 native state structures and find good accord.

To complete our analysis, we have also carried out extensive simula-

tions of a simplified model1 (see Sections 2.1 and 3.4). Our primary

goal here is to explore whether the results of our geometrical frame-

work are in quantitative accord with protein data. We will discuss the

consequences of our findings in the concluding section of this paper.

2 | MATERIALS AND METHODS

2.1 | PDB data and computer simulations

We follow the methods described in Ref. [1]. Our data consists of

4391 PDB structures, a subset of Richardsons’ Top 8000 set21

of high-resolution, quality-filtered protein chains (resolution <2 Å,

70% PDB homology level), that we further filtered to exclude struc-

tures with missing backbone atoms, as well as amyloid-like structures.

The presence of hydrogen bonds was identified using DSSP (CMBI

version 2.0).22

We carried out a detailed study within our protein data set of

(i,i + 3) poking contacts, which we divided into two classes. The first

class is that of an embedded contact, the kind that one would expect

to find in the interior of a well-formed helix. For these we require that

(i � 1,i + 2), (i,i + 3), (i + 1,i + 4) form a triplet of poking contacts. The

second class of isolated poking contacts comprises (i,i + 3) poking

contacts, while the two neighbors do not form even one-way

poking contacts. We remind the reader that in Equation (1), for one-

way poking contacts, just the top two or the bottom two equations

are satisfied. We have identified 176 711 embedded and 25 893 iso-

lated poking contacts of the type (i,i + 3) in our data set consisting of

4391 globular proteins.

To characterize handholding in Kepler sheets, we have analyzed

13 442 parallel poking contacts and 28 118 antiparallel ones of the

type (i,j) with j > i + 3 in our data set. We eliminate edge effects by

choosing contacts in the interior of the sheet by requiring that an (i,j)

poking contact in a parallel arrangement is accompanied by poking

contacts between (i � 2,j � 2) and (i + 2,j + 2). For the antiparallel

arrangement, the (i,j) poking contact is required to have partner pairs

of beads (i � 2,j + 2) and (i + 2,j � 2) that have poking contacts

as well.

In our earlier paper,1 we presented data showing that hydrogen

bonds, which provide support for the formation of protein building

blocks, were associated with poking contacts. Here we will show that

the reverse holds and that poking contacts associated with the

F IGURE 3 Two possibilities for the coordinated handholding for a
pair of identical ideal strands. Each strand has two axes. (A) A pair of
antiparallel strands a distance 2Δ apart with associated pairs of coins
(shown in orange and purple) of radius Δ at sites i and j that are
oriented along the orange and purple axes respectively. The purple
axis of the left strand goes through sites (i � 1,Mi,i + 1) whereas the
orange axis passes through the points (i � 2,i,i + 2). The orange coins
of i and j touch each other as do the purple coins centered at Mi and
Mj. The (i–j) distance is 2Δ. (B) A distinct conformation of parallel
strands. The orange coin at i now just touches the purple coin at Mj

and the orange coin at j just touches the purple coin at Mi. The (i–Mj)
distance is now 2Δ and the (i,j) distance is smaller.

ŠKRBI�C ET AL. 3
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backbone atoms are generically associated with hydrogen bonds. This

result demonstrates the two-way correspondence between geometry

and chemistry.

As detailed in,1 we have employed two complementary

Monte-Carlo techniques in our simulations to obtain ground state

conformations of our emergent space-filling model: microcanonical

Wang-Landau (WL) simulations23 and replica exchange

(RE) (or parallel tempering) canonical simulations.24 We used both

methods to check for consistency and find conformations with low

energies. We implemented the WL method without the cut-off for

the energy histogram. The acceptance probability in the WL approach

conveniently guided the search towards less populated (and thus low-

lying) energy states. The RE approach consists of canonical simula-

tions that are conducted in parallel over a wide range of temperatures

that bracket the ‘transition temperature’ between the folded and

unfolded states, while concentrating in the low temperature region to

search for low-lying states. Each simulation provides a replica of the

system in thermal equilibrium. The swapping of replicas allows for

rapid search. Both methods employed standard local moves including

crankshaft, reptation, and endpoint moves along with the non-local

pivot move and led to consistent results.

Our simulation model has the following features1:

• We define ti, ni, and bi to be the tangent, normal, and binormal vec-

tors at bead i in the local Frenet system of coordinates and ri,i + 3

to be the vector connecting beads i and i + 3 (see Figure 4).

• We impose a tube-like constraint on the local bond-bending angle

that it cannot be smaller than θmin � 91�. In addition, we require that

no pair of Cα atoms can come closer to each other than 4.5 Å, that is

derived from the van der Waals diameter of a glycine residue.19

• Poking contacts of the (i,i + 3) type within a helical α-basin are

assigned a happiness energy, �Eα, through a square well attractive

interaction provided certain soft Frenet constraints associated with

the right-handed Kepler helix are met (Figure 4A). The dot prod-

ucts ti�bi + 3 and bi�ti + 3 both need to lie between +0.156 and

+ 0.325 allowing for ±5� tolerance around the ideal angle of �76�

between the corresponding vectors. The dot products ti�ri,i + 3 and

ti + 3�ri,i + 3 need to lie in the range between +0.127 and +0.297,

permitting a ±5� tolerance around the ideal angle of �77.7�

between the corresponding vectors in the Kepler helix.

• Poking contacts in the β-basin are assigned a happiness energy,

�Eβ. The Frenet constraints allow for ±5� tolerance around the

ideal angle of 90� between vectors ni and rij, as well as nj and rij

vectors and the zigzagging is imposed by requiring that the dot

products ni�ni � 1 and ni�ni + 1 of an individual strand be smaller

than �0.5 (see Figure 5). Finally, we reward poking contacts that

do not fall in the α- or β-basin with a happiness energy, �Eγ, if they

F IGURE 5 (A) Antiparallel and (B) parallel arrangements of Kepler

strands. Local Frenet frames18 (ti,ni,bi) and (tj,nj,bj) at the locations of
beads i and j. The normal direction at i is determined by drawing a
circle through (i � 1,i,i + 1) and joining i to the center of the circle.
The tangent direction is along the line joining i � 1 and i + 1. The
(tangent,normal,binormal) unit vectors form a right-handed Cartesian
coordinate system. Note that in idealized strands scalar products ni�rij
and nj�rij are 0.

F IGURE 4 (A) Right-handed and (B) left-handed Kepler helix.
Protein helices are predominantly right-handed because the
constituent amino acids themselves are left-handed. Chiral symmetry
breaking originates from steric clashes of oxygen backbone atoms
with the side chain atoms in an extended left-handed helix.6,10 In our
simulations, we break this symmetry by hand. (A) Right-handed helix
and the local Frenet frames18 (ti,ni,bi) and (ti + 3,ni + 3,bi + 3) at the
locations of beads i and i + 3. The normal direction at i is determined
by drawing a circle through (i � 1,i,i + 1) and joining i to the center of
the circle. The tangent direction is along the line joining i � 1 and
i + 1. The (tangent,normal,binormal) unit vectors form a right-handed
Cartesian coordinate system. Note that the sign of the scalar products
ti�bi + 3 and are positive in the right-handed Kepler helix and equal to
�0.241. [This corresponds to an angle between ti and bi + 3 vectors
(as well as an angle between bi and ti + 3 vectors) of �76�]. (B) Left-
handed helix and the local Frenet frames (ti,ni,bi) and (ti + 3,ni + 3,bi + 3)
at the locations of beads i and i + 3. The scalar products ti�bi + 3 and
bi�ti + 3 are negative in the left-handed helix and equal to ��0.241.
These dot products are a convenient way of diagnosing chirality and

enforcing chiral constraints on helices. In the Kepler right handed
helix, the angle between the (i � 1,i) direction and the ri,i + 3 vector is
90�. From simple geometry, the corresponding angle between the ti
and ri,i + 3 unit vectors is �77.7� and their scalar product is �0.213.
We use this condition as a constraint in our simulations to obtain the
Kepler helix in lieu of using the condition that ri,i + 3 is perpendicular
to the (i � 1,i) direction.

4 ŠKRBI�C ET AL.
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are within a range 12 Å. We have verified that our results are inde-

pendent of the precise value of this attraction range within ±25%.

The total energy of a conformation is simply given by

E = �EαNα � EβNβ � EγNγ (with Eα = Eβ = 1 and Eγ = 0.2), where

Nα, Nβ, and Nγ denote the number of helix-like, sheet-like, and

assembly promoting contacts in each conformation.

3 | RESULTS

3.1 | Protein structure

We will state the predictions of our theoretical framework1 and com-

pare them quantitatively to empirical data. We begin with an observa-

tion and two general predictions.

3.1.1 | Poking contacts

A key ingredient of our analysis is the concept of poking contacts

defined in Equation (1). Figure 6 presents a histogram of the (i,j) physi-

cal distance in poking contacts (i,j) of the proteins in our data set. This

is a measure of the distance between Cα atoms, i and j, making a pok-

ing contact. There are two pronounced minima in the distribution cor-

responding to separations of 6 and 12 Å, which correspond roughly to

the backbone coin diameter and about twice the maximum side chain

protrusion length respectively. The distinctive structure of the poking

distance distribution of Figure 6 underscores the two distinct

mechanisms within a protein facilitating Kepler touching and nestling,

the first involving backbone–backbone interactions and the second

capturing the nestling of heterogeneous sidechains through effective

interactions between the backbone atoms. The first maximum is pri-

marily due to backbone–backbone interactions, the second a combi-

nation of next nearest neighbor strands within a sheet and side chain

mediated poking contacts, and the third maximum arises from a pair

of strands within a sheet with two strands between them.

3.1.2 | Coin/tube radius

Our theory1 predicts a coin/tube radius Δ of around 2.63 Å. This is

the length scale which is equal to the radius of curvature of the

continuous Kepler helix and is given by Rcurv = R(1 + η2), where

η = P/(2πR), P is the helix pitch, and R is the helix radius. It is also pre-

dicted to be equal to half the distance between sites separated by

three along a Kepler helix. The unique geometry of the Kepler helix

and the coin radius is determined by solving these equations along

with ensuring that i and i + 3 form a poking contact in a helix. Figure 7

F IGURE 7 (A) Native state of hemoglobin (PDB code: 1A3N) in the
CPK representation4,5 in which all heavy atoms of the protein
backbone and its side chains are represented as spheres with radii
proportional to their respective van der Waals atomic radii. Color code:
carbon (cyan), oxygen (red), nitrogen (blue), and sulfur (yellow).
(B) Simplicity underlying complexity. The hemoglobin native state
structure is shown in ribbon representation (in purple) with cyan

spheres, shrunk in size for the sake of clarity, at the positions of the Cα

atoms. (C) The hemoglobin structure shown in a tube representation
(also in purple) with the tube diameter chosen to be the theoretically
predicted value of 5.26 Å. The relatively few backbone oxygen atoms
(red spheres) not entirely enclosed by the tube are visible. (D) The same
tube representation but this time depicting the backbone and side
chain atoms not fully enclosed by the tube.

F IGURE 6 Histogram of mutual distances between 7 278 619
poking contacts in our data set comprising 4391 globular proteins
(purple line) showing a highly pronounced shell structure. The vertical
red arrow indicates the location of the peak in the first shell of poking
contacts at 5.12 Å that finishes sharply at 6.0 Å. The contacts in the

first shell include touching Kepler coins theoretically predicted to
occur at 2Δ = 5.26 Å. The vertical blue arrow indicates the location
of the peak in the second shell of poking contacts at 9.44 Å. The
second shell finishes around 12 Å, which roughly corresponds to the
twice the size of the largest amino acid. We use the latter number for
the range of sidechain mediated poking contacts responsible for
nestling and assembly of secondary structures.

ŠKRBI�C ET AL. 5
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shows a representation of the hemoglobin protein showing that

almost all backbone atoms are nicely contained within the tube of the

predicted radius.

3.1.3 | Local geometry of native state structures

Theory predicts1 that, on average, the minimum bending angle,

θmin = 2 sin�1(Δ/(2b)) � 87.3�. There can of course be exceptions

because of the 20 varieties of amino acids including small ones like

glycine, which are often associated with backward bends. Figure 8A

depicts a histogram of bond bending angles θ in our protein data set.

There are two observations. The first is that only a small percentage

(�2.8%) of local bending angles is smaller than θmin. Also, the pre-

dicted bond bending angle of the Kepler helix (indicated by the blue

vertical line) occurs close to the most prominent peak in the distribu-

tion. Figure 8B depicts a histogram of the dihedral angles μ in our data

set. The pronounced mode in the distribution is in good accord with

the theoretical prediction for the Kepler helix. A strand is found to be

twisted in a left-handed manner because the modal value occurs

larger than the ideal value μ = 180�. Figure 8C shows a histogram of

bond lengths with a mean value of 3.81 Å and a standard deviation

of 0.02 Å.

3.2 | Kepler helix

Our model is coarse-grained, and we represent each residue by just its

backbone Cα atom. In contrast, Ramachandran6 and Rose10–13 have

done vital work looking at steric constraints imposed by all the back-

bone atoms participating in the planar peptide bond.

Ramachandran showed6 that two of the important sterically

allowed regions in (φ,ψ) conformation space correspond to the helix

and the sheet. Thus, steric constraints, without even a need to con-

sider hydrogen bonds, is consistent with the two building block

conformations of a helix and a sheet. We also find this result in our

Kepler analysis. However, what eludes our coarse-grained approach is

the clear preference for the right-handed helix over the left-handed

helix.6,10 This chiral symmetry breaking arises from backbone atom

clashes in sustained left-handed helices when one considers the left-

handedness of the constituent amino acids. In contrast, our model

exhibits chiral symmetry, and it must be broken by hand, as we will, to

get protein-like behavior.

Rose et al.25 demonstrated two key results: the breakdown of the

Flory isolated pair hypothesis26 underscoring the influence of steric

constraints to beyond nearest neighbor residues and, even more fun-

damentally, the digital nature of proteins highlighted by a steric clash

when a string of α α α α… residues is immediately followed by a β

residue.

We proceed now to a study of poking (i,i + 3) contacts in our data

base obtained from the PDB. These contacts are critical for handhold-

ing in a helix, and they are purely geometrical in nature. We will distin-

guish between two classes of (i,i + 3) poking contacts (see Methods

for a description of embedded and isolated (i,i + 3) contacts) and high-

light the differences in their statistical properties in Figure 9. Most

such poking contacts are associated with a hydrogen bond between

(i,i + 3), or (i � 1,i + 3), or (i,i + 4) residues. While this is not a surprise

for poking contacts in the helix interior, it is not obvious that this

should be the case for an isolated poking (i,i + 3) contact. We identify

25 893 totally isolated poking contacts in our database, of which

�80% are effectively hydrogen bonded between (i,i + 3) Cα atoms,

�12% between (i � 1,i + 3) Cα atoms, and �2% between (i,i + 4) Cα

F IGURE 8 (A) Histogram of 970 896 bond bending angles θ in our data set of 4391 globular proteins (purple line). The vertical red line
indicates the theoretically predicted minimum value of sterically permitted bond bending angle to be θmin � 87.3�. Approximately 2.8% of bond
bending angles have values smaller than θmin. Around 41% of these small bond bending angles are in helices, while the rest are in loops. The
vertical blue line indicates the predicted θ value for the Kepler helix, which is close to the most pronounced peak in the distribution. We note that
the second broad local maxima of around �120� corresponds to bond bending angles in β-sheets that are not constrained by theory.
(B) Histogram of 966 505 dihedral angles μ in our data set of 4391 globular proteins (purple line). The vertical blue line indicates the theoretically
predicted dihedral angle in the Kepler helix of �52.4�. The vertical red line shows the value for the dihedral angle of an ideal strand μ = 180�.
(C) Histogram of 975 287 bond lengths in our data set of 4391 globular proteins (purple line), that is sharply peaked around the value of 3.81 Å. A
relatively small number of 2921 bonds are short with a length peaked around 2.95 Å (not shown in figure).
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atoms. Note that our description of a protein chain is based on a

coarse-grained Cα representation of the backbone and does not con-

sider C O or N H groups between which hydrogen bonds form.

A mere �6% are completely devoid of hydrogen bonds as deter-

mined by the DSSP.22 Unlike the isolated contacts, less than �0.05%

of the 176 711 embedded poking contacts are not associated with

hydrogen bonding. This provides a remarkable link between chemis-

try27 and geometry.

More than �96% of (i,i + 3) fully embedded poking contacts cor-

respond to a DSSP22 categorization of (H,H), while around �3.5% of

such pairs are classified as (H,X) pairs by DSSP (X = T,I,S,C,G), but only

around �0.2% of such pairs are classified by (X,H) pairs by DSSP

(X = T,I,S,C,H). This underscores the asymmetry between the begin-

ning and ending of a helix.28,29

There are marked differences in the histograms of the (i,i + 3) dis-

tances for embedded and isolated poking contacts (Figure 9A). The

result for embedded contacts is compatible with the theoretical

prediction of 2Δ = 5.26 Å for the Kepler helix1 within error bars. The

isolated poking contacts are more spread out but peak around a

value close to 2Δ. Figure 9B shows the histograms of the angles

(i � 1,i,i + 3) and (i,i + 3,i + 4), which are predicted to be 90� for the

Kepler helix. There is good accord within error bars for the embedded

poking contacts. The isolated poking contacts, on the other hand,

exhibit angles, which are less constrained and much more spread out.

Figure 9C shows histograms of the scalar products ti�bi + 3 and

ti + 3�bi, where t and b represent the tangent and binormal vectors at a

given site (Figure 4A). These quantities provide an excellent diagnostic

of helix chirality. The empirical data for the embedded poking contacts

is consistent with the theoretical prediction of +0.241 (corresponding

to an angle �76�) for the dot products in the Kepler helix and indi-

cated by the red vertical line. The positive value of the dot products

corresponds to a right-handed helix (a left-handed helix would have

negative dot products of the same magnitude) and can be used to

determine or enforce helix chirality. In contrast, an isolated poking

contact can be left-handed but cannot consolidate into a sustained

left-handed helix as mentioned earlier.

Figure 9D shows histograms of the scalar products ti�ri,i + 3 and

ti + 3�ri,i + 3. Here ri,i + 3 is the vector joining i with i + 3.Whereas the

handholding requirement is that the line joining (i,i + 3) is perpendicu-

lar to both (i � 1,i) and (i + 3,i + 4), these two latter directions do not

coincide with the tangent vectors at i and i + 3. Straightforward

geometry shows that, for the Kepler helix, the scalar products ti�ri,i + 3

and ti + 3�ri,i + 3 ought to be +0.213 (corresponding to an angle

�77.7�). We use these conditions in our simulations to reward and

promote a Kepler helix. Again, the constraint for an isolated poking

contact is much more relaxed.

3.3 | Kepler sheets

To characterize handholding in Kepler sheets, we have analyzed

13 442 parallel poking contacts and 28 118 antiparallel ones of the

type (i,j) with j > i + 3. In a Kepler helix, an interior site i has two pok-

ing contacts with sites i + 3 and i �3. A canonical strand, on the other

hand, has no poking contacts within itself and therefore all constraints

are imposed by neighboring strands within a sheet. We eliminate edge

effects by choosing contacts in the interior of the sheet by requiring

that an (i,j) poking contact in a parallel arrangement is accompanied by

F IGURE 9 Geometrical characteristics of embedded and isolated
local poking contacts along the chain of the type (i,i + 3). An
embedded (i,i + 3) poking contact is defined as one for which both
the neighboring pairs (i � 1,i + 2) and (i + 1,i + 4) are also poking
contacts. In this situation, the (i,i + 3) contact is most likely embedded
within a helix. A (i,i + 3) poking contact is denoted as isolated when
neither neighboring pair, (i � 1,i + 2) or (i + 1,i + 4), is poking even in
an asymmetric manner. An isolated poking contact is thus truly
isolated. We have identified 176 711 embedded and 25 893 isolated
poking contacts of the type (i,i + 3) in our data set consisting of 4391
globular proteins. In all the panels, the blue curves depict the
histograms for embedded poking contacts, whereas the green curves
show the corresponding histograms for isolated poking contacts. The
mean values and standard deviations are indicated in a color-coded
manner. The vertical red lines indicate the theoretically predicted
value of a given geometrical attribute for the Kepler helix. (A) The
distribution of the (i,i + 3) distances. The vertical red line indicates the
theoretically predicted coin diameter of 2Δ = 5.26 Å, pertaining to
Kepler touching. (B) The distribution of the angles (i � 1,i,i + 3) and

(i,i + 3,i + 4) that are predicted to be 90� (shown as the vertical red
line) for embedded poking contacts. (C) The distributions of the scalar
products ti�bi + 3 and ti + 3�bi. The vertical red line indicates the
theoretically predicted value of +0.241 (corresponding to an angle
�76�) for the Kepler helix. Note that positive values correspond to a
right-handed helix, while negative values correspond to a left-handed
helix. The embedded (i,i + 3) poking contacts are constrained to be
right-handed (because of local steric clashes along the backbone
comprised of left-handed amino acids). However isolated poking
contacts do not have to satisfy this requirement. (D) The histograms
of the scalar products ti�ri,i + 3 and ti + 3�ri,i + 3. The vertical red line
indicates the theoretically predicted value of +0.213 (corresponding
to an angle �77.7�) for the Kepler helix. Here ri,i + 3 is the vector
joining i with i + 3.
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F IGURE 10 Geometrical characteristics of non-local poking contacts in parallel and antiparallel arrangements within a sheet. (A) The
histograms of the (i,j) distances in the parallel arrangement of chain segments for i and j on coupled axes (in blue) and off the coupled axes
(in purple). In the coupled axes case, the two axes are theoretically predicted to be a distance 2Δ apart to allow for Kepler coin touching. In
contrast, the axes that are not paired can come closer together and facilitate compaction. The vertical red line indicates the theoretically
predicted distance of 2Δ = 5.26 Å. The mean values and standard deviations are indicated. (B) A histogram for the antiparallel case showing the
distribution of the distances (i,Mj) and (Mi,j) for a pair of points lying on the coupled axes (in blue) and off the coupled axes (in purple). (C) The
distribution of the angles (i ± 2,i,j) and (i,j,j ± 2), predicted to be 90� in the antiparallel arrangement (in blue). For the parallel arrangement
(in green), the corresponding angles, (i ± 1,i,Mj) and (i,Mj,j ± 1), need to be 90� when (i,Mj) are on the paired axes and the angles (i ± 1,Mi,j) and
(Mi,j,j ± 2) ought to be 90� when instead the points (Mi,j) are on the paired axes. (D) The distribution of the dihedral angle of the segment
(i,i + 1,i + 2,i + 3) defined as the angle between the planes defined by (i,i + 1,i + 2) and (i + 1,i + 2,i + 3). The vertical red line indicates the value
of 180�, the dihedral angle of the idealized zig–zag strand. (E) The distributions of the cosines of angles between successive normals along the
zig–zag strands. The vertical red line indicates the value of �1 corresponding to the angle of 180� between successive normals in an idealized

zig–zag strand. (F) The distributions of scalar products (ni, rij) and (nj,rij). The vertical red line indicates the idealized value of the scalar product of
0. The antiparallel case exhibits a bimodal histogram, which reflects the squeezing leading to compaction of the off-axis pair of points.

8 ŠKRBI�C ET AL.
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F IGURE 11 Gallery of 36 low-lying states of different topologies extracted from the numerical simulations of a chain of length 80, along with
their contact maps. The structures are drawn in ribbon representation, with helices shown in purple, β-strands in blue, and loops in light green
color. The positions of Cα atoms are shown as spheres. In the contact maps, the blue points represent the contacts that belong to the helical

basin, the red points represent contacts in the sheet basin, while the dark green points (shrunk in size for clarity) denote the poking contacts
within 12 Å that promote assembly. The conformations 1–12 have an all-α topology, 13–16 have an all-β topology (forming a β-barrel), 17–24
also have an all-β topology (but this time made of two or three β-sheets), and 25–36 have an α + β topology.

ŠKRBI�C ET AL. 9
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the pairs of beads (i � 2,j � 2) and (i + 2,j + 2) also being poking con-

tacts. For the antiparallel arrangement, the (i,j) poking contact is

required to have partner pairs of beads (i � 2,j + 2) and (i + 2,j � 2)

that are poking contacts as well. For the parallel case (Figure 10A), the

coupled axes are at a distance consistent with the coin diameter 2Δ,

whereas the two axes that are independent of each other tend to

squeeze closer to each other. This degree of freedom is afforded

to the sheet structure unlike the more rigid Kepler helix. A similar

effect is observed for an antiparallel arrangement in Figure 10B.

Figure 10C is a depiction of histograms of certain angles (defined in

the legend) for parallel and antiparallel sheets that ought to be 90�,

according to the theory of Kepler handholding in sheets. The data are

in approximate accord with theoretical expectations.1 The local pla-

narity of the strands is shown in Figure 10D as measured by the

F IGURE 11 (Continued)
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dihedral angle μ. The results are in good accord with the expectation

that there is a weak left-handed twist (μ is consistently greater than

180� for the strands whereas it is around 60� for the right-handed

helix and this is why we allude to the twisting as left-handed) in the

strands, while yet allowing a strand to be locally approximately planar.

Figure 10E shows pictorially the consistent zigzagging of strands

with virtually the same behavior in both parallel and antiparallel

arrangements. Finally, Figure 10F depicts a vivid example of flexibility

in the antiparallel sheet with a bimodal histogram of ni�rij and nj�rij scalar
products reflecting the difference between on- and off-axes (i,j) pairs.

F IGURE 11 (Continued)
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F IGURE 11 (Continued)
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Around �96% of the (i,j) non-local poking interior sheet contacts

correspond to a DSSP22 categorization of (E,E), while around �2% of

such pairs are classified as (C,C) pairs by DSSP. About 0.8% of the

poking sheet contacts correspond to (E,C) and (C,E) DSSP contacts.

Most of the embedded non-local poking contacts are associated with

a hydrogen bond. Zig–zag hydrogen bonds characteristic of parallel

strands are associated with about �99.5% of poking contacts, while

the ladder hydrogen bonding pattern characteristic of antiparallel

strands are associated with more than �92% of the corresponding

poking contacts. This provides additional evidence for the remarkable

marriage between geometry and chemistry.30

3.4 | Computer simulations

The computer simulation model is described in detail in our earlier

paper1 and in Section 2. To recapitulate, we assign all poking contacts

within 12 Å with a reward of �Eγ. We consider two special cases of

poking contacts (i,j) within 6 Å for an extra reward. The first case

involves (i,i + 3) contacts with soft constraints on the values of the

dot products, ti�bi + 3, bi�ti + 3 and ti�ri,i + 3 and ti + 3�ri,i + 3, and are allo-

cated an additional �(Eα � Eγ) reward. The second involves (i,j) con-

tacts with soft constraints on the dot products ni�ni � 1, ni�ni + 1,

nj�nj � 1, nj�nj + 1, ni�rij, and nj�rij and are rewarded additionally by an

amount �(Eβ �Eγ). The total energy of a conformation is simply given

by E = �EαNα � EβNβ � EγNγ (with Eα = Eβ = 1), where Nα, Nβ, and Nγ

denote the number of helix-like, sheet-like, and assembly promoting

contacts in each conformation.

We observe dynamical switching between different structures in

Monte Carlo trajectories at low temperatures in the RE approach.

From these simulations, we have selected 36 distinct conformations

belonging to three topological families. A gallery of 12 distinct confor-

mations each in the all-α, all-β, and α + β categories are presented in

Figure 11. Video S1 contains a video showing dynamical switching

between conformations of different topologies for a chain of length

80 over a 8000 frame long Monte Carlo trajectory at low-temperature

(T* = 0.05), in which successive frames were recorded at time inter-

vals of 5000 Monte Carlo steps per bead.

In our simulations, we have one energy parameter Eγ, which

drives compaction. We have explored values of Eγ from 0 to 0.5.

When Eγ = 0, there is no drive to promote tertiary structure forma-

tion and independent helical and sheet conformations are obtained. A

non-zero attractive parameter Eγ promotes the assembly of secondary

motifs into protein-like tertiary structures of different topologies.

When Eγ � 0.35, the drive to form secondary motifs is reduced and

the building blocks themselves start to become unstable. For each of

the 36 conformations, we calculate energies

E = �EαNα � EβNβ � EγNγ (with Eα = Eβ = 1) as a function of Eγ. We

define a degeneracy parameter Q as the ratio of the standard devia-

tion of the 36 energies to the magnitude of the mean energy value.

Figure 12 is a plot of Q versus Eγ. It exhibits a broad minimum around

Eγ � 0.22 underscoring the robustness of the near degeneracy of the

energies of distinct conformations, even for a homopolymer chain of

modest length.

Figure 13 shows the energies of the 36 conformations shown in

Figure 11 and labeled along the x-axis for the energy parameters

Eα = 1, Eβ = 1, and Eγ = 0.22. Note that all-α configurations

completely lack contacts in the β-basin whereas all-β

configurations have no contacts in the α-basin. α + β conformations

contain both. The three energy parameters conspire to yield near

degeneracy in the energies of all distinct topologies. Also, there needs

to be some approximate tuning of Eγ to promote assembly of the

building blocks of helices and sheets, while yet not destabilizing them.

F IGURE 12 Plot of Q, quantifying the degree of degeneracy of
the energies of the 36 conformations shown in Figure 11 (see text),
versus the magnitude of the energy parameter promoting tertiary
assembly of the secondary motifs, Eγ. Note that Q is less than 0.05 for
the entire range of the energy parameter in the figure.

F IGURE 13 Plot of the energies of the 36 conformations shown
in Figure 11, E = �EαNα � EβNβ � EγNγ with Eα = Eβ = 1 and
Eγ = 0.22. Q exhibits a minimum around this value of the assembly
energy parameter indicating good degeneracy (Figure 12). The blue
triangles denote the ‘helical’ contribution to the energy, the red
squares indicate the ‘sheet’ contribution, and the green diamonds
denote the ‘assembly’ contribution. The purple circles denote the
total energy of each of the 36 conformations underscoring the near
degeneracy.
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This illustrates how the pre-sculpted energy landscape20 of proteins is

captured by our model in a simple way.

4 | CONCLUSIONS

Globular proteins14–17 act as machines in living cells, and they serve

as the molecular targets of evolution. Proteins, despite their moderate

size, exhibit many common characteristics. Small globular proteins fold

rapidly and reproducibly into their native state structures. The library

of putative native state folds remains largely intact and does not

evolve, because it is sculpted by geometry and symmetry. All protein

native state structures are made of the same building blocks: topologi-

cally one-dimensional helices and zig–zag strands assembled into

almost planar sheets. The number of protein sequences vastly exceeds

the number of distinct native state folds, and many sequences can

adopt the same native state conformation. The native state structure

of a protein is generally robust to amino acid mutations except at cer-

tain pivotal locations. Also, several proteins tend to aggregate creating

water-insoluble amyloid.31–33 These commonalities can be under-

stood based on our geometrical model of proteins.

Symmetry and geometry constrain the structures of infinite sized

crystals with exactly 230 distinct space groups in three dimensions.34

Proteins are modest sized chains. Our analysis strongly suggests that

F IGURE 14 Cartoon of free
energy landscape for protein folding.
Panels (A) and (B) show two views of
the generally accepted folding funnel
landscape of proteins. Panels (C) and
(D) depict two views of an energy
landscape with three minima. The
number of such minima, predicted by
our theory, is several thousand
corresponding to the number of
topologically distinct ways of
assembling the building blocks of
helices and sheets. This pre-sculpted
landscape is then modified in panels
(E) and (F) by a sequence selected
through evolution as it adopts its best
fit native state fold.

14 ŠKRBI�C ET AL.
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space-filling and symmetry result in the number of distinct folds being

of the order of several thousand. Just as common salt and a grocer's

apples adopt the face-centered-cubic lattice structure, different

sequences of proteins can be housed in the same protein fold.35,36

The key point is that a putative protein native state fold transcends

the sequence housed in it and is determined by the overarching con-

straints of geometry and symmetry. Indeed, many protein sequences

adopt the same fold,35,36 and the menu of potential folds is limited in

number.37–41 In this respect, proteins exhibit some similarities to crys-

tals because of space-filling even though proteins are neither infinitely

long nor periodic.

Our work reinforces earlier findings11,20,42–45 that the gross fea-

tures of the energy landscape of proteins result from the amino acid

aspecific common features of all proteins. This landscape is (pre)

sculpted by geometry and symmetry (and not by chemistry) and has

several thousand broad minima corresponding to putative native state

structures. For each of these minima, the desired funnel-like

behavior46–48 is already achieved at the homopolymer level. The supe-

rior fit of a sequence to one of the folds from the predetermined

menu sculpts the second and simpler stage of the folding funnel land-

scape (Figure 14).

Protein structures necessarily lie in a marginally compact phase

because the tube diameter and the length scale associated with the

touching of two coins are self-tuned to be identical. When the tube

diameter is larger than the interaction range, the tube cannot avail of

any attraction, and one obtains a highly degenerate self-avoiding

swollen phase. When the tube thickness is much smaller than the

interaction range, one obtains a highly degenerate compact phase

with a great deal of latitude in the relative placement of nearby tube

segments. Nestled in between is the marginally compact phase, in

which there is a great reduction in the degeneracy of the ground state

structures with a requirement that nearby tube segments be right

alongside tracking each other. This marginally compact phase is poised

close to other phases and therefore confers exquisite sensitivity to

the structures housed in it.

Proteins are special in that they exhibit stability, diversity, and

sensitivity. The individual minima in the free energy landscape are

themselves stable and are additionally stabilized by the characteristics

of a sequence that fits within it. Diversity exists because there are

many low energy equivalent modular structures. Sensitivity stems

from the marginally compact phase that protein structures live in.

Our results confirm that there is surprising accord between geom-

etry and quantum chemistry in shaping the structure of proteins. The

formidable complexity of proteins seems to be captured by extraordi-

narily simple ideas from symmetry and geometry. In future work, we

will present details and comparisons of our predictions with data on

amyloids and investigate the critical role played by side chains.
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