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Building blocks of protein structures: Physics meets biology
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The native state structures of globular proteins are stable and well packed indicating that self-interactions are
favored over protein-solvent interactions under folding conditions. We use this as a guiding principle to derive
the geometry of the building blocks of protein structures—α helices and strands assembled into β sheets—with
no adjustable parameters, no amino acid sequence information, and no chemistry. There is an almost perfect
fit between the dictates of mathematics and physics and the rules of quantum chemistry. Protein evolution is
facilitated by sequence-independent platforms, which can elaborate sequence-dependent functional diversity.
Our work highlights the vital role of discreteness in life and may have implications for the creation of artificial
life and on the nature of life elsewhere in the cosmos.
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Proteins [1–41], the molecular machines of life, are
formidably complex [42]. They have myriad degrees of free-
dom, an astronomical number of possible sequences for even
a moderate length chain, and are stabilized by thousands of
interactions, both intramolecular and with solvent. Yet, many
proteins (here, we do not consider disordered proteins or
structural proteins) adopt their native conformation sponta-
neously under physiological conditions [5]. The native state
structures of globular proteins are space filling and maximize
self-interaction [6,7,9]. Here we use this as a constructive
hypothesis to predict the building blocks of protein native state
structures. The folded structures [21,27,33,36] are modular
and built on scaffolds of α helices [2] and strands of β sheet
[3], the only two conformers that can be extended indefinitely
without steric interference while providing hydrogen-bonding
partners for their own backbone polar groups [4,10,29]. Pro-
teins are digital molecules: Nature’s exclusion of α-β hybrid
segments [28]—part α helix, part β strand—is built into
proteins at the covalent level and restricts the topology of
single domain proteins to a few thousand distinct folds at most
[8,14,20,23].

Helices are ubiquitous in biomolecular structures. They
are also found in everyday life, e.g., a garden hose (or a
flexible tube) is often wound into a helix. Figure 1(a) is a
sketch of a segment of a protein helix shown with a tube
envelope. A uniform, flexible, self-avoiding solid tube, whose
axis is a line, is a geometrical generalization of a sphere.
A sphere is a region carving out space around a point, its
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center. Analogously, all points within the tube are at a distance
from the tube axis smaller than or equal to the tube thickness,
which is measured by the tube radius, �. A flexible tube is
an extended object with uniaxial symmetry and is not plagued
by symmetry conflicts, unlike the simple model of a chain of
tethered spheres for which the uniaxial symmetry inherent to
a chain clashes with the spherical symmetry of the constituent
objects.

Here we model a protein as a discretized tube with a set
of equally spaced points, analogous to the Cα atoms along
the protein backbone, defining its axis. The coordinates of
these points are described using two angles: θ and μ (see
Fig. 2). The simplest repeating geometry of the axis of a tube
of radius � is a helix of pitch P, wrapped around a straight
cylinder of radius R, taken to be the helix radius. The helix is
parametrized by a variable t and is defined by

r(t ) = [R cos(t ), R sin(t ), Pt/(2π )]. (1)

As t advances by an integer multiple of 2π , the helix
repeats periodically along the z axis, with an increment equal
to the pitch. The helical tube geometry is characterized by
three dimensionless quantities: �/R, η = P/(2Rπ ), and ε0,
the rotation angle between successive points along the axis.
Our initial goal parallels the seminal work of Pauling et al.
[2], who sought rotation angles that allowed for the optimal
placement of hydrogen bonds in a helix. The crucial difference
here is that we do not need to invoke quantum chemistry,
covalent bonds, the planarity of peptide bonds, or hydrogen
bonds.

2470-0045/2021/104(1)/014402(7) 014402-1 ©2021 American Physical Society

https://orcid.org/0000-0002-8947-8216
https://orcid.org/0000-0002-3535-7873
https://orcid.org/0000-0002-1245-9842
https://orcid.org/0000-0002-9185-2123
https://orcid.org/0000-0002-9752-6871
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.014402&domain=pdf&date_stamp=2021-07-08
https://doi.org/10.1103/PhysRevE.104.014402
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FIG. 1. Optimal geometry of space-filling helix. (a) A segment
of ten residues of a helix from phage T4 lysozyme protein 1L56
(residues 61–70). The ribbon represents the helical trace formed by
the Cα atoms, the spheres denote the heavy backbone and side chain
atoms in the helix, and the transparent tube is a guide to the eye.
(b) and (c) Top views of two continuum helices, both with a helix
pitch P to helix radius R ratio η = (P/2πR) ∼ 0.4 and a local radius
of curvature of the helix, Rlocal = R(1 + η2) ∼ 1.16R. The tube radii
� in the two cases are different: �/Rlocal = 1/2 and 1, respectively.
(b) When � is less than Rlocal, there is empty space in the interior.
When � is bigger than Rlocal, the turn is too tight leading to a kink, as
is sometimes observed in a garden hose (not shown). (c) The sweet
spot occurs when � = Rlocal, leading to maximization of the local
self-interaction. (d) and (e) Side views of two helices with η values
of 0.8 and ∼0.4, respectively. In both cases, � has been chosen
to be the local radius of curvature of the latter helix ∼1.16R. (d)
When η is larger than ∼ 0.4, there is empty space between successive
turns and the nonlocal self-interaction is not maximized. In the other
limit of small η (not shown), successive turns of the tube overlap
and this is forbidden sterically. (e) A Goldilocks situation here is
when η is tuned just right to ∼ 0.4 yielding (�/R) ∼ 1.16 for a
continuum space-filling helix maximizing both local and nonlocal
self-interaction. The top and side views of the optimal continuum he-
lix are shown in (c) and (e) respectively. Panels (f) and (g) show how
these results can be captured analytically (see text) for a continuum
and a discrete tube, respectively.

We begin with a brief account of earlier work on maxi-
mizing the self-interaction of a continuum tube [43–48] by
winding the tube as tightly as possible, subject to the excluded
volume constraint that the tube cannot penetrate itself. Such
space filling ensures the expulsion of the solvent (water) from
the core of the folded protein and is driven by hydrophobicity.
We ensure local space filling of the helix by equating the tube
radius to the local radius of curvature [Fig. 1(c)], which, in
turn, is equal to R(1 + η2) [47], yielding

� = R(1 + η2). (2)

The successive turns of a space-filling helix need to be
parallel and alongside each other [Fig. 1(e)]. The square of
the distance between a reference point in the continuum helix

FIG. 2. Coordinate system at a discrete location i along the tube
axis. The bond length b, assumed here to be a constant, is the distance
between successive points. The angle θi is the angle subtended at i
by points (i − 1) and (i + 1) along the tube axis. μi is the dihedral
angle between the planes π1 and π2 formed by [(i − 2), (i − 1), i] and
[(i − 1), i, (i + 1)], respectively, or equivalently the angle between
the binormals in a Frenet reference frame at points (i − 1) and i.
Knowledge of the coordinates of the previous three points (i − 2, i −
1, i) and the variables (θi, μi ) are sufficient to uniquely specify the
coordinates of the point (i + 1).

(denoted by t0 = 0◦) and an arbitrary point t is given by

d2 = R2[2(1 − cos t ) + η2t2]. (3)

We determine the parameter value tmin for which d2 is a
minimum and set this minimum distance equal to the square
of the tube diameter, 4�2, thereby ensuring nonlocal space
filling [Fig. 1(f)]. The minimization condition is

sin tmin + η2tmin = 0, (4)

and the distance constraint is

4�2 = R2
[
2(1 − cos tmin) + η2t2

min

]
. (5)

We solve Eqs. (2), (4), and (5) simultaneously to obtain
the unique geometry of the continuum space-filling helix
[Figs. 1(c), 1(e), and 1(f)]: η ∼ 0.4, �/R ∼ 1.16, and tmin ∼
302◦.

The idealized continuum tube does not take into account
discreteness, a common ingredient to all matter, which is cru-
cial at small length scales. A unique benefit of discreteness is
the emergence of a second building block (besides the space-
filling helix): a two-dimensional strand with a zigzag tube axis
[Fig. 3(a)], the rotation angle ε0 of 180◦, and μ = 180◦. The
existence of two building blocks is required for the rich diver-
sity of topologically distinct folds, necessary for the versatile
functioning of the molecular machines. A helix is defined by
a repeat of (θ , μ) values and a planar strand by a repeat of
μ = 180◦. For repeat μ values close to 180◦, one obtains a
twisted planar strand, a geometrical feature often observed in
protein structures.

014402-2



BUILDING BLOCKS OF PROTEIN STRUCTURES: … PHYSICAL REVIEW E 104, 014402 (2021)

0

 0.02

 0.04

 0.06

4.5 5.0 5.5 6.0

F
re

qu
en

cy

d(i,j) [Å] 

0 02

 0.04

 0.06

re
qu

en
c 0 06cy

(a) 

(b) 

ε0 = 180°

(c)

2∆

2∆

2∆

2∆

2∆

2∆
i 

j 
i Mj 

(d) (e)

i+1 

i-1 

j-1 

j+1 

i+1 

i-1 

j+1 

j-1 

j 

0
 0.02
 0.04
 0.06
 0.08
 0.1

4.5 5.0 5.5 6.0

F
re

qu
en

cy
d(i,Mj) [Å] 

FIG. 3. Optimal packing of strands. (a) A single two-dimensional zigzag strand (with a rotation angle of 180◦) lying in the plane of the
paper. This planarity can only occur for a discrete tube and is forbidden for a tube in the continuum. Alternate points along a strand are colored
red and blue (right and left points). There are two equivalent choices for a straight tube axis, one lying along the line of blue (left) points
(blue or the left axis) or the line of red points (red or the right axis). Two distinct space-filling arrangements for strand packing are shown
corresponding to (b) red axis–red axis (right axis–right axis) tubes [or equivalently blue axis–blue axis (left axis–left axis) tubes (not shown)]
and (c) red axis–blue axis (right axis–left axis) (not shown). The two cases correspond to antiparallel and parallel β sheets with distinct distance
constraints. The yellow point Mj lies midway between the blue (left) points j − 1 and j + 1. The maximization of self-interaction dictates that
the distances (i, j) in (b) and (i, Mj ) in (c) ought to be 2� ∼ 5.26 Å to ensure space filling. (d) and (e) show the histograms of the distances
(i, j) and (i, Mj ) in the interior of antiparallel and parallel β sheets in protein structures. The black vertical lines show the theoretical prediction
of 2� ∼ 5.26 Å. The mean values of both histograms are the same as the theoretical prediction (see Table I).

Figure 1(g) shows the space-filling discrete helix with
η ∼ 0.4 and �/R ∼ 1.16, the geometrical characteristics of
the continuum space-filling helix. The discretization requires
the specification of the rotation angle ε0 between successive
points that retains the space-filling conditions for the discrete
case. This choice of ε0 is made (in direct analogy with the
continuum case) by requiring that the distance between points
i (analogous to t0 = 0◦) and i + m with integer m (analo-
gous to tmin) is equal to the tube diameter and the angles
(i − 1, i, i + m) and (i, i + m, i + m + 1) are both equal to
90◦ (analogous to the minimization condition). The smallest
value of m for which these conditions are satisfied is m = 3
and ε0 ∼ 99.8◦ (the ratio of the distance to the tube diameter
is found to be 1.00. . . and both the angles are 90.0. . .◦ for this
value of ε0). Upon defining the length scale to match the mean
Cα-Cα distance along the protein backbone of 3.81 Å, the tube
radius is found to be � ∼ 2.63 Å. Using these basic results,
one may derive many attributes of the space-filling discrete
helix, which are in excellent accord with the α helix building
block of protein structures (see Figs. 4 and 5 and Table I).

A space-filling helix maximizes self-interaction through
local interactions, whereas the nonlocal interactions of strands

assembled into sheets lead to space filling. We build on the
insights gained from the helix analysis to make predictions
of the geometrical arrangements for strand pairing [Figs. 3(b)
and 3(c)]. First, the strands need to be in phase with each other
mimicking the behavior of adjoining turns in the continuum
helix, placed parallel to and alongside each other. Second,
there are two distinct ways [Figs. 3(b) and 3(c)] of accom-
plishing space filling of assembled strands corresponding to
antiparallel and parallel β sheet hydrogen-bonding patterns,
first predicted by Pauling and Corey [3] based on hydrogen
bonding. The space-filling packing requires that the distances
(i, j) in Fig. 3(b) (antiparallel arrangement) and (i, Mj ) in
Fig. 3(c) (parallel arrangement), which are measures of the
closest approach of two parallel tube segments, both ought to
be 2� ∼ 5.26 Å [see Figs. 3(d) and 3(e) and Table I).

It is important to note that, for both helices and sheets,
the side chains do not clash sterically unlike in a well-packed
compact arrangement of parallel strands in a hexagonal array.
In addition to helices and strands, chain turns are needed
to interconnect these building blocks. In proteins, the most
abundant turns are β turns, tight, four-residue segments that
approximately reverse the overall chain direction [13]. β turns
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FIG. 4. Two views of the local structure representation of pro-
teins. (a) (θ , μ) plot of the PDB data set (see Table S1 of
the Supplemental Material) comprising 4416 proteins and 972 519
residues. Here, the local conformations of residues are shown in
the (θ , μ) plane. For strands, a μ value that deviates from ∼180◦

is the signature of a twisted strand, which is still locally planar.
The plot shows chiral symmetry breaking; i.e., the points are not
symmetrically placed around μ = 180◦. Our simplified analysis does
not attempt to account for this. (b) (θ , μ) coordinates of random
samples of 12 000 points each from the interior of α helices (orange);
antiparallel (green) and parallel (red) β sheets; and β turns [the two
interior sites of (i, i + 3) hydrogen-bonded residues with no helical
residues] (blue). The tight turns have θ values similar to those of
helices. Unlike for helices and turns, the θ values of strands are not
constrained. The black X in both panels shows our prediction of the
geometry of the space-filling helix.

are tightly wound like an α helix, and therefore are predicted
to have similar θ angles as in the α helix (Fig. 4).

Figure 4(b) shows the (θ , μ) coordinates for four classes of
residues: those that participate in α helices, parallel β sheets,
antiparallel β sheets, and β turns. The black X marks the
coordinates of the predicted space-filling helix. Unsurpris-

ingly, α helix μ values (49.7 ± 3.9)◦ are a bit lower than the
theoretical prediction of 52.4◦ because the distance between
a hydrogen-bonded donor and acceptor (N-H· · · O=C) can be
less than their summed van der Waals radii. As predicted, the
tight turns predominantly have a θ value close to that of the α

helix. The β strands are twisted with a μ angle around 180◦
and have a spread of θ angles.

The accord between our prediction and structural data from
the protein data bank underscores the consilience [49] be-
tween mathematics and physics on one hand and quantum
chemistry on the other and shows how self-interaction is
maximized through a space-filling arrangement of individual
helices and sheets (Fig. 6). The large but finite number of pro-
tein native state folds [8,14,20,23] sculpted by geometry and
symmetry [25,26] is reminiscent of the restriction of the num-
ber of space groups of Bravais lattices of three-dimensional
crystals to exactly 230 due to periodicity and space-filling
requirements [50].

Our theory shows convincingly that the structure space and
sequence space of proteins are separable, yielding sequence-
independent forms [22] that are Platonic and immutable,
and not subject to Darwinian evolution. Sequences can then
populate these forms resulting in the evolution of the func-
tional diversity of life. The evolution [41,51,52] of biological
macromolecules can be framed as a random walk in an
inordinately vast sequence space, with selection guided by
fitness. Our formalism imposes an important constraint on
protein evolution. A consequence is that the repertoire of
possible folds is generated from presculpted α helices and β

strands, and, of necessity, accessible folds are mix and match
constructs of these fundamental forms. This diversity of struc-
tural scaffolds provides a platform for elaborating functional
diversity.

FIG. 5. Distribution of α helix characteristics. (a) Distribution of the experimentally determined bond lengths (consecutive Cα-Cα

distances). The bond length in the theory was chosen to be the mean bond length of 3.81 Å and sets the characteristic length scale. The
other panels show the distributions of (b) the rotation angle, (c) the rise per residue, (d) the helix radius, (e) θ , (f) μ, (g) the local radius of
curvature, and (h) the dihedral angle between the planes defined by the points (i − 1, i, i + 3) and (i, i + 3, i + 4) in Fig. 1(g). The triangles
formed by the two triplets ought to be congruent but they are not coplanar. The black line in each of the panels (except the first) shows the zero
parameter theoretical prediction. Overall, there is excellent accord between theory and observations from protein structures.
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TABLE I. Quantitative comparison between theory and data
from the Protein Data Bank (PDB). We choose the bond length to
match the experimentally determined mean distance between suc-
cessive Cα atoms of 3.81(±0.02) Å. The chain is defined by discrete
points denoted by 1, 2, 3,. . . i . . .; d (i, j) is the distance between the
points i and j. The angle ∠[π (i, j, k), π (l, m, n)] is the dihedral an-
gle between the two planes formed by the sites (i, j, k) and (l, m, n).
Mj is defined to be the geometrical center of the points j − 1 and
j + 1. The agreement between theory and data is striking considering
that the theory is parameter free.

Continuum tube diameter from theory 2� = 5.26 . . . Å

Quantity Theory PDB data

HELIX

Rotation angle ε0 (deg) 99.8 99.1 ± 3.4
Number of residues per turn 3.61 3.63 ± 0.13
Helix radius R (Å) 2.27 2.30 ± 0.07
Rise per residue p (Å) 1.58 1.51 ± 0.08
Helix pitch P (Å) 5.69 5.47 ± 0.49
Pitch to radius ratio η = P/(2Rπ ) 0.400 0.377 ± 0.046
∠[π (i − 1, i, i + 3), 69.1 71.0 ± 4.4
π (i, i + 3, i + 4)] (deg)
Local radius of curvature (Å) 2.74 2.73 ± 0.05
θ (deg) 91.8 91.3 ± 2.2
μ (deg) 52.4 49.7 ± 3.9

SHEET

Type I β-sheet: Parallel
θ (deg) Flexible 121 ± 10
μ (deg) ∼180 191 ± 17
d (i, Mj ) (Å) 2� = 5.26 5.26 ± 0.16

Type II β-sheet: Antiparallel
θ (deg) Flexible 127 ± 10
μ (deg) ∼180 186 ± 20
d (i, j) (Å) 2� = 5.26 5.26 ± 0.20

In a seminal work, Anfinsen [5] demonstrated that proteins
fold rapidly and reproducibly into their native state structures.
This naturally led to the text book wisdom [36] that the amino
acid sequence of a protein determines its three-dimensional
structure, leading to much effort in finding the energy min-
imum of a many-body complex system of a protein in its
solvent with a huge number of degrees of freedom and with
myriad interactions. Subsequent work by Matthews [16] and
others showed that protein structure is nevertheless very toler-
ant of amino acid replacement.

Our results here conclusively demonstrate a simple two-
step process for understanding proteins. First, a menu of
putative native state structures is created without regard to
amino acid sequence and chemistry. In the second step, a
given protein selects its native state from this menu. Thus the
horrendous problem of working out the native state structure
of a given protein from knowledge of its sequence by finding,
from scratch, the conformation, which minimizes the net en-
ergy of myriad imperfectly known microscopic interactions, is
replaced by the much simpler task of finding the best fit of the
sequence to one among the library of geometrically sculpted
folds determined in a sequence-independent and chemistry-

FIG. 6. Consilience between mathematics and biochemistry. The
figure shows three views each of two short proteins. (a)–(c) is the
56-residue long protein 3GB1 comprising four strands assembled
into sheets along with a single helix. (d)–(f) is a protein of the same
length, 2KDL, comprised of a three-helix bundle. Each panel shows a
uniform tube, with the theoretically predicted radius of 2.6 Å, whose
axis passes through the Cα atoms. The sole exception is the β sheet
for which hydrogen bonding was identified using DSSP [11]), where
every other Cα atom is considered [as explained in Figs. 3(b) and
3(c)]. The tube color varies continuously from red to blue (via gray)
as its axis moves from the N terminal to the C terminal (in the black
and white image, the tube is darkest at the two ends). The heavy
atoms of the side chains sticking outside the tube are shown. The
maximization of the self-interaction through space-filling is evident.

independent manner. This best-fit process, also exploited in
the threading algorithm [15], is where the role of the amino
acid sequence becomes paramount. Indeed, in an influential
series of papers [12,17–19], it has been highlighted that the
amino acid side chains must be able to fit into the native state
fold with minimal frustration, thereby creating a landscape
akin to a folding funnel.

Some 80 years ago, Bernal [1] wrote “Any effective
picture of protein structure must provide at the same time
for the common character of all proteins as exemplified by
their many chemical and physical similarities, and for the
highly specific nature of each protein type. It is reasonable
to believe, though impossible to prove, that the first of these
depends on some common arrangement of the amino acids”.
Indeed, our work here shows that the common character of all
proteins originates from an appropriate tubelike geometrical
description of just the backbone Cα atoms, which are common
to all proteins, and results in the library of native state folds
sculpted by geometry and symmetry, without a need for
sequence specificity or chemistry. The highly specific nature
of each protein type then arises from its distinctive amino acid
side chains and their fit to one of the folds from the library. For
a protein, the folded structure is central to its functionality.
The situation is loosely analogous to a restaurant in which the
chef (geometry and symmetry) creates a menu of items (the
library of putative native state folds) that customers (protein
sequences) can order from (fold into). The chef does not cater
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to the individual tastes of the customers. Rather, all patrons
of the restaurant are satisfied picking an item from the menu.
As in proteins, the total number of patrons can vastly exceed
the number of menu items. If, in fact, the menu of protein
structures itself evolved, then one would be confronted by an
almost impossible situation for evolution and natural selection
in which a protein and its interacting partners would have to
coevolve their structures synergistically in order to maintain
function. This situation is deftly avoided by the geometrically
determined native state folds providing a fixed backdrop for
evolution to shape protein sequences and functionalities.

Richard Feynman, in a lecture entitled “There’s plenty of
room in the bottom: An invitation to enter a new field of
physics” at the annual American Physical Society Meeting at
Caltech on December 29, 1959, suggested that tiny, nanoscale
machines could be constructed by manipulating individual
atoms. Proteins are precisely such machines [21,27,33,36].
Indeed, proteins as well as macroscopic machines establish a
stable framework that can accommodate moving parts, which
perform a function. Proteins are nature’s implementation of
the abstract forms presented here, a diversity of stable forms
deduced entirely from mathematical considerations. These
predictions—independent of any chemistry—have implica-
tions for life elsewhere in our cosmos [53] suggesting that
there is no absolute need for carbon chemistry for life to exist.
We look forward to other implementations in the lab, raising
the prospect of powerful interacting machines, potentially
leading to artificial life [54].

In summary, underlying life’s evolving complexity [42] is
a sequence-independent energy landscape with thousands of
stable minima—a landscape formed from nature’s scaffold
building blocks, a protein grammar. In both natural and ar-
tificial languages, a grammar is a finite set of rules that can
generate a large number of syntactically correct sentences or
strings. The discretized tube model establishes an immutable
grammar of life and “from so simple a beginning, endless”—
protein sequences and functionalities—“most beautiful and
most wonderful have been, and are being, evolved” [55].

PDB analysis. We have carried out a quantitative compari-
son between our predictions and protein structure. To develop
a working set for comparison, Richardson’s Top 8000 set of
high-resolution, quality-filtered protein chains (resolution <2
Å, 70% PDB homology level) (see the web site [56]) was
further filtered to exclude all structures with missing backbone
atoms, yielding a working set of 4416 structures (listed in

Table S1 of the Supplemental Material [57]). The working set
was cross-checked against 478 proteins having a more strin-
gent homology cutoff of 20%, taken from the Pisces database
[24]; 205 entries are in common to both sets. Almost all bond
lengths (Cα(i) − Cα(i+1) distance) (∼99.7%) in the working set
are clustered around 3.81 Å, as expected for a trans peptide.
Those remaining have shorter bonds, ∼2.95 Å, predominantly
from cis residues. For purposes of comparison, a fixed bond
length of 3.81 Å is used. Hydrogen bonds were identified
using DSSP [11]. Hydrogen-bonded conformers extracted from
the working set include 3595 helices, 8473 antiparallel pairs,
4639 parallel pairs, and 58 820 turns. Helices were identified
as 12-residue segments with intrahelical hydrogen bonds (Ni-
H· · · Oi−4 and Oi · · · H-Ni+4) at each residue. Antiparallel
strand pairs were identified by three interpair hydrogen bonds
at (i, j), (i + 2, j − 2), and (i − 2, j + 2); i ∈ strand 1, j ∈
strand 2. To avoid possible end effects, only (i, j) residue
pairs were used. Parallel strand pairs were identified by
four interpair hydrogen bonds between (i, j − 1), (i, j + 1),
(i + 2, j + 1), and (i − 2, j − 1); i ∈ strand 1, j ∈ strand 2.
Again, only the i-th residue was retained. Double counting
was assiduously avoided. β turns were identified by hydrogen
bonds between (i, i + 3) with no helical residues among the
four. The (θ , μ) values were then recorded for points i+1 and
i+2 in the turns.
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