
J. Chem. Phys. 154, 104902 (2021); https://doi.org/10.1063/5.0040942 154, 104902

© 2021 Author(s).

Phase behavior of hard cylinders
Cite as: J. Chem. Phys. 154, 104902 (2021); https://doi.org/10.1063/5.0040942
Submitted: 17 December 2020 . Accepted: 19 February 2021 . Published Online: 09 March 2021

 Joyce T. Lopes,  Flavio Romano,  Eric Grelet,  Luís F. M. Franco, and  Achille Giacometti

https://images.scitation.org/redirect.spark?MID=176720&plid=1401534&setID=378408&channelID=0&CID=496958&banID=520310234&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=ed5dd4029e63a2f75704dfd96619305ac85f9c8d&location=
https://doi.org/10.1063/5.0040942
https://doi.org/10.1063/5.0040942
http://orcid.org/0000-0002-4313-6501
https://aip.scitation.org/author/Lopes%2C+Joyce+T
http://orcid.org/0000-0002-7396-8456
https://aip.scitation.org/author/Romano%2C+Flavio
http://orcid.org/0000-0002-9645-7077
https://aip.scitation.org/author/Grelet%2C+Eric
http://orcid.org/0000-0002-9334-9660
https://aip.scitation.org/author/Franco%2C+Lu%C3%ADs+F+M
http://orcid.org/0000-0002-1245-9842
https://aip.scitation.org/author/Giacometti%2C+Achille
https://doi.org/10.1063/5.0040942
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0040942
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0040942&domain=aip.scitation.org&date_stamp=2021-03-09


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Phase behavior of hard cylinders

Cite as: J. Chem. Phys. 154, 104902 (2021); doi: 10.1063/5.0040942
Submitted: 17 December 2020 • Accepted: 19 February 2021 •
Published Online: 9 March 2021

Joyce T. Lopes,1,a) Flavio Romano,2,3,b) Eric Grelet,4,c) Luís F. M. Franco,1,d) and Achille Giacometti2,3,e)

AFFILIATIONS
1 Universidade Estadual de Campinas, Faculdade de Engenharia Química, Departamento de Engenharia de Sistemas Químicos,
Campinas, Brazil

2Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia Campus Scientifico, Edificio Alfa,
via Torino 155, 30170 Venezia Mestre, Italy

3European Centre for Living Technology (ECLT) Ca’ Bottacin, 3911 Dorsoduro Calle Crosera, 30123 Venice, Italy
4Université de Bordeaux, CNRS, Centre de Recherche Paul-Pascal, 115 Avenue Schweitzer, 33600 Pessac, France

a)Electronic mail: joycejtl@gmail.com
b)Electronic mail: flavio.romano@unive.it
c)Electronic mail: eric.grelet@crpp.cnrs.fr
d)Electronic mail: lmfranco@unicamp.br
e)Author to whom correspondence should be addressed: achille.giacometti@unive.it

ABSTRACT
Using isobaric Monte Carlo simulations, we map out the entire phase diagram of a system of hard cylindrical particles of length (L) and
diameter (D) using an improved algorithm to identify the overlap condition between two cylinders. Both the prolate L/D > 1 and the oblate
L/D < 1 phase diagrams are reported with no solution of continuity. In the prolate L/D > 1 case, we find intermediate nematic N and smectic
SmA phases in addition to a low density isotropic I and a high density crystal X phase with I–N-SmA and I-SmA-X triple points. An apparent
columnar phase C is shown to be metastable, as in the case of spherocylinders. In the oblate L/D < 1 case, we find stable intermediate cubatic
(Cub), nematic (N), and columnar (C) phases with I–N-Cub, N-Cub-C, and I-Cub-C triple points. Comparison with previous numerical and
analytical studies is discussed. The present study, accounting for the explicit cylindrical shape, paves the way to more sophisticated models
with important biological applications, such as viruses and nucleosomes.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0040942., s

I. INTRODUCTION

After nearly one century since Onsager’s pioneering prediction
that orientational order can be entropically induced for elongated
particles,1 simple models of rod-like objects continue to play a cen-
tral role in the study of colloidal liquid crystals2,3 and self-assembly
processes.4,5

The simplest model for a rod-like molecule is the hard sphero-
cylinder, an object formed by a cylinder of length L capped with two
hemispheres of matching diameter D. This shape can be obtained
by rolling a sphere of radius D/2 around a segment of length L. The
great advantage of this model, and the key to its popularity, is the
simplicity of the overlap condition between two such hard sphero-
cylinders; this condition can be cast in a simple analytical form6,7

that can be computed very efficiently. As early as 1997, Bolhuis
and Frenkel8 performed a remarkably detailed study of the phase

diagram of this model that is now considered a classic reference
in the field. Other similar shapes have also been proposed in the
literature, including hard ellipsoids,9 hard helices,10 and hard dumb-
bells.11

However, there are physically relevant objects whose shape can-
not be represented as hard spherocylinders but rather as hard cylin-
ders (HCs). Examples include biologically relevant cases such as
viruses3,12,13 and nucleosomes.14,15 Hard cylinders of length L and
diameter D also have the additional advantage of having a natural
oblate limit L/D < 1, approaching a disk for L/D → 0, as well as
the prolate limit L/D > 1 (rod). This is not the case of hard sphero-
cylinders where the oblate limit is obtained by resorting to a slightly
modified model.8 By contrast, the overlap condition between two
cylinders is significantly more evolved with respect to the sphe-
rocylinder case. This notwithstanding, and given the similarity in
shape, one might rightfully wonder what are the differences, if any,
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in the two phase diagrams. For instance, the phase diagram of hard
ellipsoids16 is different from the phase diagram of hard spherocylin-
ders, in spite of the significant similarities in their shapes. This issue
goes far beyond a simple academic problem in view of the strong
propensity of nucleosomes14,15 and filamentous viruses17,18 to form
a columnar phase, whose existence in the phase diagram of sphe-
rocylinders has been ruled out by recent detailed numerical simula-
tions19 for prolate particles even if it were predicted theoretically20

for oblate ones.
The aim of the present paper is to tackle this issue by perform-

ing a detailed analysis of the phase diagram of hard cylinders both
in the prolate (L/D > 1) and in the oblate (L/D < 1) cases. While
simulations of hard cylinders have been performed in the past,6,21,22

to the best of our knowledge our study is the first one providing
the complete phase diagram. For this purpose, we perform isobaric
Monte Carlo (MC) simulations of a system of hard cylinders in a
wide range of aspect ratios L/D and volume fractions using an effi-
cient method for the overlap test that compares well with the existing
ones.6,21,22 The algorithm, inspired by Ref. 22, is described in the
Appendix. By monitoring the appropriate order parameters and cor-
relation functions, we provide the corresponding phase diagram in
the L/D volume fraction plane and compare it with the correspond-
ing phase diagram of the hard spherocylinders.8 Particular care has
been devoted to avoiding possible finite size effects along the lines of
a recent similar analysis for spherocylinders.19

The outline of this paper is as follows. In Sec. II, we described
the details of our numerical approach, as well as the arsenal of
tools (order parameters and correlation functions) useful to iden-
tify all different phases. Some technical details have been confined
to the Appendix. Section III reports the main results of the present
study with additional figures and tables given in the supplementary
material. Finally, Sec. IV discusses the key messages of this study and
some interesting perspectives for the future.

II. SIMULATIONS
A. Monte Carlo simulations

Our particles consist of N cylinders/disks of height L, diameter
D, and whose orientations are identified by a unit vector û, as shown
in Fig. 1(a). Pressures are measured in reduced units P∗ = PvHC/kBT,
and the density ρ = N/V is represented by the volume fraction
η ≡ NvHC/V, where vHC = LπD2/4 is the volume of a hard cylin-
der (HC). We then performed isobaric (NPT) Monte Carlo (MC)
simulations at different aspect ratios L/D both for rods (L/D > 1)
and disks (L/D < 1). All simulations were organized in cycles (MC
steps), each consisting, on average, of 1000 attempts to translate and
rotate a randomly selected particle, and one attempt to change the
volume of the simulation box. In all cases, we have performed com-
pression runs starting at low pressure in the isotropic phase, and an
expansion run starting from a close-packed solid configuration at
high pressure. Each system was first equilibrated using ≈5.45 × 106

MC steps, with additional production runs of 1.5 × 105 steps. The
typical number of particle was N ≈ 1000, but different numbers were
used depending on the aspect ratio, as detailed in Tables I and II. In
the case of disks, the number of particles N was adjusted depend-
ing on L/D to keep the simulation box roughly cubic. In our NPT
simulations, we have used floppy (i.e., shape-adapting) rectangular

FIG. 1. (a) Our cylinder model, where L is the height, D is the diameter, and û is the
unit vector defining the orientation of the cylinder; possible overlap configurations
between two cylinders (see the Appendix): (b) rim–rim; (c) rim–disk; and (d) disk–
disk.

computational box, where one axis was randomly selected and its
length was allowed to change with periodic boundary conditions
to obtain an isotropic pressure8 in the prolate L/D > 1 case, and a
simple uniform volume move with cubic periodic boundary condi-
tions in the oblate L/D < 1 case. In some specific cases, we have also

TABLE I. Number of particles N used in the simulations of rods.

L/D N L/D N

2.5 968 6.25 1350
3.0 1152 6.5 1350
3.25 1152 7.0 1536
3.5 1352 7.5 1536
5.0 1176 10.0 1944
6.0 1350
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TABLE II. Number of particles N used in the simulations of disks.

L/D N L/D N

0.05 540 0.2 625
0.1 640 0.25 864
0.11 576 0.3 720
0.12 528 0.35 612
0.125 528 0.5 686
0.15 825

extended the computational box along the main axis of the cylinders
to minimize finite size effects.19

B. Overlap of hard cylinders
The first method for testing overlaps of hard cylinders was pro-

posed by Allen et al.6 and also used by Blaak, Frenkel, and Mulder.21

An alternative method was recently proposed by Orellana, Romani,
and De Michele.22 In the following, we use a refined version of this
method outlined below. The overlap of two cylinders can occur in
either of the following three ways: disk–rim, rim–rim, and disk–disk
(Fig. 1). Therefore, to ensure that the cylinders do not overlap, we
have to check whether the overlap occurs in one of those possible
configurations, as detailed in the Appendix.

Preliminary simulations were initially performed to assess the
computational effort of this algorithm compared with the hard
spherocylinders counterpart. We found the present algorithm to be
slightly slower, of the order of 20% or less, and hence in line with
Ref. 22.

We perform the less expensive test first and progressively
include additional more expensive ones. So, we first check whether
the two spheres (of diameter L + D) that encompass the cylinders
overlap; if they do not, the cylinders cannot overlap. If the encom-
passing spheres do overlap, the test is repeated for the spherocylin-
ders enclosing the particles, using the standard algorithm to calculate
the shortest distance between two rods.7 Only if the spherocylin-
ders overlap, the overlap between two cylinders is tested for. See the
Appendix for additional details.

C. Order parameters
To identify different thermodynamic phases, we rely on infor-

mation based on global orientational and translational order, i.e.,

the nematic, smectic, and hexatic order parameters, on correlation
functions such as the radial g(r), parallel g∥(r∥) and perpendicular
g�(r�) distribution functions, as well as on the visual inspection of
the simulation snapshots. Figure 2 displays representative snapshots
of all different phases obtained in the L/D = 10 —all snapshots were
obtained using the Ovito Software23 where different colors represent
different orientations of cylinders. While the isotropic I phase is both
positionally and orientationally disordered, the nematic N phase is
positionally disordered but orientationally ordered, and its presence
can be inferred monitoring the nematic order parameter P2. This is
obtained as the largest eigenvalue of the tensor

Qαβ =
1
N

N

∑
i=1

3
2
ûiαû

i
β −

1
2
δαβ, (1)

where α, β = x, y, z. The corresponding eigenvector then gives the
main director n̂.

In addition to the orientational order along one preferred direc-
tion n̂, the smectic phase SmA is further characterized by a one-
dimensional ordering (layering) along n̂ that is best captured by a
combination of the radial distribution function

g(r) = 1
Nρ

1
4πr2 ⟨

N

∑
i=1

N

∑
j≠i
δ(r − rij)⟩ (2)

and the parallel

g∥(r∥) =
1
N
⟨ 1
ρLxLy

N

∑
i

N

∑
j≠i
δ(r∥ − rij ⋅ n̂)⟩ (3)

positional correlation function. Here, ri is the center of mass of the
i-th cylinder, rij = rj − ri, and rij = |rij|. The smectic order parameter

⟨τ1⟩ = ∣⟨ei2π r⋅̂n
d ⟩∣ (4)

also proves convenient. Here, r is the position of a particle’s center
of mass and d is the optimal layer spacing. Here and below, ⟨⋯⟩ is
the average over independent configurations at equilibrium. Then,
we have ⟨τ1⟩ ≈ 1 in the smectic SmA phase and ⟨τ1⟩ ≈ 0 elsewhere
(phases with no layered structure).

By contrast, the columnar C phase is characterized by two-
dimensional in-plane hexagonal order and one-dimensional posi-
tional disorder along n̂. This is best captured by the perpendicular
positional correlation function

g⊥(r⊥) =
1

2πr⊥N
⟨ 1
ρLz

N

∑
i

N

∑
j≠i
δ(r⊥ − ∣rij × n̂∣)⟩, (5)

FIG. 2. Representative snapshots of the
thermodynamic phases found for HC for
L/D = 10: isotropic (I), nematic (N), smec-
tic A (SmA), and crystal (X). Reduced
corresponding pressures P∗ are
displayed.
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positional correlation functions, as well as by the use of the hexatic
(or bond) order parameter

⟨ψ6⟩ = ⟨
1
N ∑j

RRRRRRRRRRRR

1
n( j) ∑⟨lm⟩

e6iθlm
RRRRRRRRRRRR
⟩. (6)

Here, θlm is the angle that the projection of the intermolecular vec-
tors rjl and rjm onto the plane perpendicular to the director n̂, n( j)
is the number of nearest-neighbors pairs of molecule within a sin-
gle layer, and the sum∑⟨ lm⟩ is over all possible pairs within the first
coordination shell. With this definition, ⟨ψ6⟩ ≈ 1 for hexagonal in-
plane ordering and ⟨ψ6⟩ ≈ 0 otherwise. We refer to the past literature
(see, e.g., Kolli et al.24 and references therein) for additional details.

Finally, the cubatic Cub phase corresponds to a long-range ori-
entationally ordered phase without any positional order but with the
presence of three equivalent perpendicular directions. In this phase,
the particles form short stacks of typically few particles with neigh-
boring stacks tending to be perpendicular to one another along the
three selected directions. While a suitable order parameter can be
devised,25 visual inspection is usually sufficient to unambiguously
identify this phase. The details of the cubatic Cub phase will be
discussed in Sec. III.

III. RESULTS
A. Cylindrical rods L /D > 1

We first consider the prolate case, i.e., cylindrical rods with
L/D > 1. Figure 3(a) depicts the reduced pressure P∗ as a function
of the volume fraction η (i.e., the equation of state) for L/D = 5 and
L/D = 10. Figure 3(b) shows also the corresponding orientational
order parameter P2 again as a function of the volume fraction η.

In the case L/D = 5 (open symbols), the system is in an isotropic
phase I until η ≈ 0.4, then switches to a smectic SmA phase, and then
to a crystal X phase. The same sequence of phases is also found for
the large aspect ratio L/D = 10 (closed symbols) but with transitions
shifted to lower η and with the additional presence of a nematic N
phase in the region 0.3 ≤ η ≤ 0.4. The isotropic–nematic transition
is signaled by an abrupt jump in the nematic order parameter P2 as
shown in Fig. 3(a).

Here, it is worth to notice that our definition of crystal phase X
includes the so-called smectic SmB phase, another name often used
in this framework,24 that is, a smectic SmA phase with additional in-
plane long-range hexagonal order,3 thus hardly distinguishable from
a crystal phase due to the finite size of the simulations box.

Additional insights can be obtained by looking at the correla-
tion functions at an intermediate aspect ratio L/D = 7—see supple-
mentary material Fig. S1 for the analog of Fig. 3 in the case L/D = 7.
Figure 4 presents the corresponding radial g(r) (a), parallel g∥(r∥)
(b), and perpendicular g�(r�) (c) distribution functions of cylinders
with L/D = 7 for increasing pressures.

At P∗ = 3.96 (continuous red line), all correlation functions are
featureless, indicating the presence of an isotropic I phase. As pres-
sure is increased up to P∗ = 4.40 (yellow dashed line), the correlation
functions do not show any significant change but the nematic order
parameter P2 [see the supplementary material, Fig. S1(b)] shows an
abrupt upswing, signaling the onset of a nematic N phase.

FIG. 3. (a) Reduced pressure P∗ vs cylinder volume fraction η. Open symbols:
L/D = 5 and closed symbols: L/D = 10; (b) nematic order parameter P2 vs volume
fraction η for both L/D = 10 and L/D = 5. Same symbols as above. The different
symbols and colors refer to different mesophases, as detailed in Fig. 2.

At P∗ = 7.70 (green dotted line), both the radial distribution
function g(r) and the parallel correlation function g∥(r∥) display
a clear periodicity consistent with a smectic SmA ordering. The
absence of regular oscillations in the perpendicular correlation func-
tion g�(r�) confirms the radial liquid-like order of the mesophase,
which, therefore, does not correspond to the crystal X phase. The lat-
ter phase is eventually reached at P∗ = 9.90 (dashed-dotted line) as
shown by the characteristic periodicities for all directions in g�(r�)
as well as in g(r) and g∥(r∥).

It comes as no surprise that the low-η behavior of HCs is quali-
tatively similar to the corresponding Hard SpheroCylinders (HSC)
counterpart,8 with small quantitative differences for the smaller
aspect ratio L/D = 5. However, at high pressure and volume frac-
tion, one possible important element of distinction between the two
phase diagrams is the presence of a putative columnar phase that
has already been demonstrated not to exist in the HSC counter-
part.19 We explicitly addressed this problem following the method
proposed by Dussi, Chiappini, and Dijkstra19 who suggested that
the apparent stabilization of a columnar phase in HSCs could be
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FIG. 4. Distribution functions of cylinders with L/D = 7.0. P∗ = 3.96 continuous
red line (I); P∗ = 4.40 yellow dashed line (N); P∗ = 7.70 green dotted line (SmA);
P∗ = 9.90 dashed-dotted line (X). Note that r = |r| in (a), r = |r∥| in (b), and r = |r�|
in (c).

ascribed to finite size effects when the number of layers is not
sufficiently high compared to the aspect ratio L/D. For sake of consis-
tency, we first reproduced the same results found in Ref. 19 for HSCs,
and then applied the same method to the HC case. We note that the
metastability of the columnar phase for HSCs was also independently
confirmed by Liu and Widmer-Cooper26 using a different method.

The results obtained are presented in Fig. 5. Figure 5(a) shows
a production run with aspect ratio L/D = 6 at packing fraction
η = 0.6. In this case, both visual inspection and the behavior
of the corresponding correlation functions (see the solid line in
supplementary material, Fig. S2, for results with N = 675) strongly
suggest the presence of a columnar phase. However, if the num-
ber of particles is doubled along the director n̂, the same calcu-
lation produces the final configuration shown in Fig. 5(b) that
can clearly be classified as smectic SmA (see the dotted line in
supplementary material, Fig. S2, for results with N = 1350). This
shows that there is no stable columnar phase in HCs as in the HSCs
case. This effect is likely to be ascribed to the preference for finite size
domains to arrange locally in columnar structures whose stability is
eventually overwhelmed by long-range effects.

A sketch of the final phase diagram for HCs in the plane
packing fraction η as a function of the aspect ratio ranging from
L/D = 2.5 to 10 is displayed in Fig. 6. The color codes used to
represent different phases are outlined in Fig. 2 that also presents
representative snapshots of each phase. Here, we employ the same
classification as Dussi, Chiappini, and Dijkstra.19

Similar to hard spherocylinders, the system exhibits the
isotropic (I), nematic (N), smectic A (SmA), and crystalline (X)
phases.

Not surprisingly, this behavior is similar to that of HSCs,8,27 but
few differences are worth noticing.

As in the case of HSCs, no liquid crystal phases are observed
below a critical aspect ratio L/D ≈ 3. This fact can be easily ratio-
nalized via Onsager theory,1 as the ratio between the covolume and
volume of rods with lower L/D is not sufficiently larger than that
of a sphere, and the excluded volume effects then are insufficient
to promote an organized orientationally ordered phase. By con-
trast, at sufficiently high densities and aspect ratios, the excluded
volume effects tend to promote orientational order to increase the
translational entropy, and then minimizing the free energy.

Accordingly, the system is in the isotropic phase for any ratio
L/D below a certain packing fraction that decreases by increasing
the rod aspect ratio, as shown in Fig. 6. Upon increasing η, the first
organized phase encountered is a smectic SmA phase in the range
from L/D = 3.25 to L/D = 6, and a nematic N phase above L/D ≈ 6.
This mirrors the HSC case where, however, the smectic SmA phase
is limited to a very small range 3 < L/D < 4. At higher packing frac-
tions η, the system undergoes a smectic SmA to crystal X transition
irrespective of the aspect ratio L/D.

The sketched phase diagram in Fig. 6 prompts the existence
of an isotropic–smectic–solid (I–SmA–X) triple point at η ≈ 0.55
and L/D ≈ 3.0, and an isotropic–nematic–smectic (I–N–SmA) triple
point at η ≈ 0.4 and L/D = 6.5.

Interestingly, the location of the I–N–SmA is found at L/D ≈ 6.5
and shifted to higher aspect ratios compared to that of HSCs, which
is found at L/D ≈ 3.7.8 As a result, the nematic N phase stabilizes at
shorter aspect ratios in the HSC system when compared to its HC
counterpart.
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FIG. 5. Equilibrated configuration with aspect ratio L/D = 6 at packing fraction
η = 0.6 with (a) N = 675 initially distributed on two layers. (b) The same result
with twice the particles exhibits a different structure.

FIG. 6. Computed phase diagram of hard cylinders of packing fraction η vs aspect
ratio L/D. Visible phases are isotropic (I), nematic (N), smectic (SmA), and crystal
(X). Color codes are as in Fig. 2.

It is also interesting to notice that our results are compatible
with both I–N and the N–SmA being first-order transitions, thus
mirroring what is known for the HSC from the work by Polson and
Frenkel.28 It would be interesting to pursue the same analysis carried
out by these authors in the present case as well. The same consider-
ation holds true for an interesting analysis of the L/D→∞ Onsager
limit that has been performed for the HSC case8 that could also be
replicated in this case.

As a final remark, we note that the length L for HSCs corre-
sponds to L + D in the case of HCs. This is important when com-
paring the corresponding phase diagrams and, indeed, it rational-
izes why the isotropic–smectic I–SmA transition for HCs occurs at
L/D ≈ 3 whereas for HSCs, it occurs at L/D ≈ 4. However, the ten-
dency of a flat edge to promote the onset of a smectic SmA phase
appears to be a general feature as also suggested by a recent study29

on hard equilateral triangular prisms, where the particles feature also
flat sides and the smectic SmA phase is shifted to considerably lower
packing fractions as compared to HSCs.

B. Cylindrical disks L /D < 1
We now tackle the oblate case of cylindrical disks with L/D < 1.

One important advantage of dealing with cylinders is that this limit
can be achieved with no solution of continuity, unlike the sphero-
cylinders counterpart where this is not possible.8 Figure 7 depicts the
four different phases that we find in this case: a disordered isotropic
I, a cubatic Cub, a nematic N, and a columnar C phase, as detailed in
Table III and illustrated in Fig. 7.

As in this case of prolate cylinders, we performed the same
detailed analysis of the different obtained phases in terms of cor-
relation functions and order parameters to derive the equation of
states. Supplementary material Fig. S3 shows the reduced pressure
P∗ and the P2 nematic order parameter as a function of the packing
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FIG. 7. Representative snapshots of the
different phases found in the oblate L/D
< 1 case: isotropic (I), cubatic (Cub),
nematic (N), and columnar (C). The
corresponding values of aspect ratios
L/D and reduced pressure P∗ are also
reported.

fraction η for both L/D = 0.2 and L/D = 0.05 as representative exam-
ples, from which one can obtain the corresponding phase diagram
of Fig. 8 in the volume fraction η aspect ratio L/D plane, which can
be contrasted with its prolate counterpart shown in Fig. 6. Here, a
range from L/D = 0.05 to L/D = 0.5 has been analyzed, and in Fig. 7,
representative snapshots of different phases are depicted to be color-
coded according to Table III, in analogy with the discussion of the
prolate case L/D > 1.

For aspect ratios 0.3 < L/D < 0.5, there is a direct transi-
tion from an isotropic I to a columnar C phase upon increasing η

TABLE III. Colors and symbols used to represent disk phases.

Color Phase Notation Symbol

Red Isotropic I Circle
Yellow Nematic N Triangle
Purple Cubatic Cub Squares
Blue Columnar C Diamond

FIG. 8. Phase diagram of the oblate hard cylindrical disk case L/D< 1 in the volume
fraction η aspect ratio L/D plane. Different phases are color coded as detailed in
Fig. 7 and Table III.

above ≈0.4. In the columnar phase, the disks are arranged on a
hexagonal lattice in the direction perpendicular to the main director
n̂ but their centers of mass are disorderly distributed in space. For
smaller aspect ratios 0.1 < L/D < 0.3, a cubatic Cub phase appears
between the I and C phase. In the cubatic phase, the disks tend to
assemble in short stacks of about four or five units, with the neigh-
boring columns perpendicular to each other. This differs from the
cubic phase because it lacks translational order.30 At even smaller
aspect ratios (L/D ≤ 0.1), the cubatic Cub phase is replaced by a
nematic N phase up to η ≈ 0.4 and by a columnar phase at higher
η. At even higher packing fractions η, we did observe the formation
of a crystal phase X, but the location of the corresponding bound-
aries would require a specific investigation that was not pursued in
the present paper.

All these transitions can be best inferred by looking at the
correlation functions as shown in Fig. 9 (see Fig. 7 for the cor-
responding snapshots). In the I phase (red continuous line), the
radial distribution function g(r) displays a flat behavior for r > D,
indicating the absence of short-range aggregation, a feature con-
firmed by the behavior of both g∥(r∥) and g�(r�). By contrast, the
columnar C phase (blue dashed line) displays characteristic regular
oscillations in g(r) and g�(r�), but the behavior of g∥(r∥) is irregu-
lar, indicating the absence of a one-dimensional ordering along the
main director n̂. Likewise, the radial distribution function g(r) of
the cubatic phase (dotted purple line) is quite different from both
the I and C phases, while the nematic order parameter P2 is close
to zero for I and Cub. Evidence of the formation of short stacks
is the higher peak at short distances (L/D < r/D < 2L/D) in the
radial distribution function g(r) of the cubatic Cub phase (the pur-
ple line in Fig. 9), which is significantly smaller in the g(r) of an
isotropic phase [the red line in Fig. 9(a)]. Finally, the onset of the
nematic N phase (dashed-dotted yellow line) is signaled by the sig-
nificant oscillation of the radial distribution function g(r) and by the
abrupt upswing in the nematic order parameter P2, as shown in the
supplementary material.

At variance with the prolate L/D > 1 counterpart, in the oblate
case, three triple points appear. The I–N–Cub triple point occurs at
L/D ≈ 0.1 and η ≈ 0.3. The N–Cub–C triple point is approximately
located at L/D ≈ 0.1 and η ≈ 0.4. Finally, the I–Cub–C triple point
has approximate coordinates L/D ≈ 0.35 and η ≈ 0.45.

Our results qualitatively agree with the density function calcu-
lations by Wensink and Lekkerkerker20 who predicted the existence
of a nematic region for flat disks that becomes progressively nar-
rower as L/D increases. The same authors also predicted a transition
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FIG. 9. Distribution functions of hard cylindrical disks. L/D = 0.1 and P∗ = 1.18 red
continuous line I; L/D = 0.05 and P∗ = 1.37 blue dashed line C; L/D = 0.2 and
P∗ = 5.50 dotted purple line Cu; L/D = 0.5 and P∗ = 8.25 dashed-dotted yellow
line N. The color code is outlined in Table III. Here, again r = |r| in (a), r = |r∥| in
(b), and r = |r�| in (c).

from the isotropic phase directly to the columnar C phase, in agree-
ment with our results. At a more quantitative level, the predicted
volume fractions ηIN ≈ πL/D for the isotropic–nematic transition
and ηNC ≈ 0.4 for the nematic–columnar N–C, as somewhat larger
than those found in the present study.

At variance of these theoretical findings, our results indicate
also the existence of a cubatic Cub phase, in agreement with the
results by Veerman and Frenkel,30 as well as by Duncan et al.,25

in simulations of cut spheres, and by Blaak, Frenkel, and Mulder21

in simulations of hard cylinders. Where direct comparison with the
above two papers is possible, we find complete agreement between
their results and ours.

Duncan et al.25 simulated cut spheres of L/D = 0.1, 0.15, 0.2,
0.25, and 0.3, and, despite the differences in shape, our results are
very similar to theirs. These authors showed that there is a nematic
N but no cubatic Cub phase at L/D = 0.1, and that the opposite is true
for L/D ≥ 0.15. Figure 8 shows that for HCs, a cubatic Cub phase
is already present at L/D = 0.11, as the nematic N phase vanishes.
The cubatic Cub phase is present until L/D ≈ 0.3, whereas only the
isotropic I and columnar C phases exist at larger aspect ratios.

As in our case, Blaak, Frenkel, and Mulder21 investigated a sys-
tem of HC with L/D = 0.9 and did not find any cubatic phase. Our
results explain this finding by showing that L/D = 0.9 is a too large
aspect ratio to support a cubatic phase that is, however, present at a
smaller aspect ratio 0.1 < L/D < 0.3, as shown in Fig. 8.

IV. CONCLUSIONS
In this paper, we have used isobaric (NPT) Monte Carlo simu-

lations to study the phase diagram of a system of N hard cylinders
as a function of their aspect ratio and volume fraction. To achieve
this, we have implemented a new and efficient overlap test for hard
cylinders that compares well with those existing in the literature.21,22

This allows us to study the complete phase diagrams in the aspect
ratio vs volume fraction for both the prolate L/D > 1 and the oblate
L/D < 1 cases.

In the prolate case L/D > 1, we find a phase diagram very sim-
ilar to the hard spherocylinders counterpart, featuring the presence
of a nematic N and a smectic SmA phase, in addition to the isotropic
I and the crystal X phases, as well as two I–Sm–X and I–N–SmA
triple points. As in the spherocylinder case,19 we have shown that the
appearance of a columnar C phase can be traced back to a finite-size
effect and that it disappears for sufficiently large systems. Our sim-
ulations confirm the lack of existence of a stable columnar C phase,
which was, nevertheless, predicted by density functional theory.20

In the oblate case L/D < 1, we identified the presence of a
columnar C, a nematic N, and a cubatic Cub phase, in agreement
with theoretical prediction,20 as well as with past numerical simula-
tions of cut spheres25,30 and hard cylinders.21 In the latter case, we
have provided an explanation of the failure of past simulations of
identifying the cubatic Cub phase that can be ascribed to the too
large aspect ratio used in these simulations. Interestingly, the phase
diagram also includes three I–N–Cub, N–Cub–C, and I–Cub–C
triple points.

This study paves the way to tackling more complex systems
building upon cylindrical shapes that are of experimental inter-
est, such as hard cylinders interacting via a Yukawa tail,3 as well
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as hard cylinders with short-range directional attractions.15,31 Such
investigations are underway and will be reported elsewhere.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional figures and
tables, including all relevant data reported in the manuscript.
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APPENDIX: ALGORITHM TO CHECK OVERLAP
BETWEEN TWO CYLINDERS
1. Parallel cylinders

If two cylinders are parallel, the overlap can occur between
disk–disk or rim–rim only, and it can be easily checked. For each
particle pair, we define four vectors starting from the vector join-
ing the two centers of mass, r12. We do this by extracting its parallel
and perpendicular component with respect to the director ûj of each
particle, i.e.,

r1∥ = (rij ⋅ û1)û1,
r2∥ = (rij ⋅ û2)û2,

r1� = r12 − (r12 ⋅ û1)û1,
r2� = r12 − (r12 ⋅ û2)û2.

(A1)

In a parallel configuration, the directors can either be the same
of one or the opposite of the other. The overlap occurs if all the
following conditions are satisfied:

∣r1∥∣ ≤ L,
∣r2∥∣ ≤ L,
∣r1�∣ ≤ D,
∣r2�∣ ≤ D.

(A2)

When the cylinders are exactly parallel, û1 = ±û2, and half
of the conditions above are redundant since |r1�| = |r2�| and
|r1∥| = |r2∥|; when implementing the computer code, however, one
has to include tolerances and care must be taken in handling these
conditions consistently.

FIG. 10. The star symbols represent the points of closest approach on each
cylinder. (a) Rim–rim configuration, (b) disk–rim configuration.

2. Rim-rim overlap
Since the overlap between spherocylinders is the first test that

is done, and the rim of a spherocylinder is similar to the rim of
a cylinder, if the rims of two spherocylinders do overlap, the two
cylinders will certainly overlap as well. Hence, having performed the
spherocylinder overlap test, we now check if the overlap occurs in a
rim–rim configuration.

To that end, we define the vectors V1 = −r12 + λû1 and
V2 = r12 + μû2, where the numbers λ and μ, consistently with Ref. 7,
identify the points of closest approach between the axes of the two
cylinders. These values are calculated using the Vega and Lago’s
algorithm,7 which we implement in the spherocylinder overlap test.
If the cylinders are in a rim–rim configuration, the two conditions
below must be satisfied:

∣V1 ⋅ û2∣ < L/2,
∣V2 ⋅ û1∣ < L/2.

(A3)

In Fig. 10, we see that in the case of a disk–rim configuration,
for instance, the projection of V1 in the direction of û2 is larger than
L/2.

3. Disk-disk overlap
The orientations of the cylinders are perpendicular to the

planes of the disks. The planes of the two disks intersect in a line
parallel to û1 × û2. We define P1 and P2 as being the points in
the intersection line that are closer to the disk centers d1 and d2,
respectively, as shown in Fig. 11.

To find P1, we minimize (P1 − d2)2, which is equivalent to
minimizing |P1 − d1|. The minimization can be done by applying
Lagrange multipliers with two constraints,

(P1 − d1) ⋅ û1 = 0, (A4a)

(P1 − d2) ⋅ û2 = 0. (A4b)

The constraints presented in Eq. (A13) ensure thatP1 is in a line
perpendicular to both û1 and û2. Applying the Lagrange multipliers,

L = (P1 − d1)2 − λ(P1 − d1) ⋅ û1 − μ(P1 − d2) ⋅ û2. (A5)

From∇L = 0, one has

P1 = d1 +
λû1

2
+
μû2

2
. (A6)
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FIG. 11. Disks of two cylinders.

Replacing Eq. (A4a) into Eq. (A6) gives

λ = −μ(û1 ⋅ û2). (A7)

Substituting Eqs. (A4b) and (A7) into (A6) yields

μ = −2(d1 − d2) ⋅ û2
1 − (û1 ⋅ û2))2 . (A8)

Replacing Eq. (A8) into (A7) gives

λ = 2[(d1 − d2) ⋅ û2] ⋅ (û1 ⋅ û2)
1 − (û1 ⋅ û2)2 . (A9)

Replacing Eqs. (A8) and (A9) into (A6) gives

P1 = d1 +
[(d1 − d2) ⋅ û2] ⋅ ((û1 ⋅ û2) ⋅ û1 − û2)

1 − (û1 ⋅ û2)2 . (A10)

We define d12 = d2 − d1 and Δ2
1 = (P1 − d1)2 and rewrite

Eq. (A10) as

Δ2
1 =
(d12 ⋅ û2)2 ⋅ ((û1 ⋅ û2)2 − 2(û1 ⋅ û2)2 + 1)

(1 − (û1 ⋅ û2)2)2 . (A11)

Simplifying Eq. (A11) gives

Δ2
1 =

(d12 ⋅ û2)2

1 − (û1 ⋅ û2)2 . (A12)

Similarly, for disk 2,

Δ2
2 =

(d12 ⋅ û1)2

1 − (û1 ⋅ û2)2 . (A13)

A necessary, but not sufficient, condition for the overlap to
occur is that both Δ1 and Δ2 have to be less than the cylinder
radius D/2. If this condition is satisfied, the intersection line crosses
both disks through segments of length 2δ1 and 2δ2, as presented
in Fig. 12.

FIG. 12. Disks of two cylinders.

The expressions to calculate δ1 and δ2 are presented in the
following equation:

δ1 =
√

D2

4
− Δ2

1

δ2 =
√

D2

4
− Δ2

2.

(A14)

Finally, an overlap will occur if the condition in the following
equation is true:

∣P2 − P1∣ = ∣d12 ⋅
(û1 × û1)
∣̂u1 × û2∣

∣ ≤ δ1 + δ2. (A15)

4. Disk–rim overlap
Let us take a disk with center in dj and a cylinder with center in

ri (Fig. 13). We define Ui as the point on cylinder i that is theclosest

FIG. 13. Disk–rim configuration.
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to dj, Pd a point on the disk j that is the closest to cylinder i, Pc a point
on cylinder i that is the closest to disk j, ϕ an angle between ŵj and
dj − Pd, v̂j, ûj, an axis system fixed on cylinder j and, finally, ϕ as an
angle between ŵj and dj − Pd.

Ui is obtained from

Ui = ri + [(dj − ri) ⋅ ûi]ûi. (A16)

First, we test the following conditions:

1. If |dj − Ui| > d: there is no overlap.
2. If |dj − Ui| < d/2 and |dj − ri| > L/2: the overlap would be a

disk[–] disk kind and not a disk–rim, and therefore, we do not
need to handle this condition test at this stage.

3. If |dj − Ui| ≤ d/2 and |(dj − ri)| < L/2: the two cylinders are
overlapping, since the cent[er] of the disk j is within cylinder i.

Test number 3 is a sufficient, but not necessary, condition for
the overlap to occur since another point can be touching cylinder j
even if dj is not within cylinder i.

Hence, if condition 3 is not satisfied, we have to find Pd, the
closest point in disk j to cylinder i.

Arbitrary points on the border of disk j (d) and on the line of
cylinder i (c) are defined as

d = dj + R cos (ϕ)ŵj + R sin (ϕ)̂vj, (A17a)

c = ri + λûi, (A17b)

where R ≡ D/2 is the radius of the cylinders.
The square of the distance between d and c is thus

(d − c)2 = (dj − r2)2 + R2 + λ2 + 2R cosϕ((dj − ri) ⋅ ŵj)
+ 2R sinϕ((djri) ⋅ v̂j) − 2λ((dj − ri) ⋅ ûi)
− 2λR cosϕ(ŵj ⋅ ûi) − 2λR sinϕ(̂vj ⋅ ûi). (A18)

Pc and Pd are the points that minimize Eq. (A18), therefore,

λ − r cosϕ(ŵj ⋅ ûi) − r sinϕ(̂vj ⋅ ûi) − ((dj − ri) ⋅ ûi) = 0, (A19)

sinϕ[λ(ŵj ⋅ ûi) − ((dj − ri) ⋅ ŵj)]
− cosϕ[λ(̂vj ⋅ ûi) − ((dj − ri) ⋅ v̂j)] = 0. (A20)

Rewriting Eq. (A20) gives

sinϕ
cosϕ

= λ(̂vj ⋅ ûi) − ((dj − ri) ⋅ v̂j)
λ(ŵj ⋅ ûi) − ((dj − ri) ⋅ ŵj)

. (A21)

If the numerator and denominator of Eq. (A21) are taken as
the catheti of a triangle, the hypotenuse can then be found to give
the expressions for cosϕ and sinϕ. Once we have these expressions,
they are applied to Eq. (A19), resulting in an equation for λ. Since
we were not able to find an analytical solution to the previous equa-
tion, a numerical method such as the Newton–Raphson or bisection
method is used to find λ. In our code, we combine both meth-
ods, running a few steps with one and a few with the other until
convergence is found to machine precision.

Once Pd is obtained, we define T = Pd − ri, and calculate the
components of T that are parallel T∥ and perpendicular T� to ûi,

T∥ = (T ⋅ û1)û1, (A22a)

T� = T − T∥. (A22b)

Finally, the overlap only occurs if |T∥| ≤ L/2 and |T�| ≤ D/2.
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