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The thermodynamic origins of chiral twist in
monolayer assemblies of rod-like colloids†
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The propagation of chirality across scales is a common but poorly understood phenomenon in soft

matter. Here, using computer simulations, we study twisted monolayer assemblies formed by both chiral

and achiral rod-like particles in the presence of non-adsorbing polymer and characterise the thermo-

dynamic driving forces responsible for the twisting. We observe assemblies with both like and inverted

chirality relative to the rods and show that the preferred twist is already determined during the initial stage

of the self-assembly. Depending on the geometry of the constituent rods, the chiral twist is regulated by

either the entropy gain of the polymer, or of the rods, or both. This can include important contributions

from changes in both the surface area and volume of the monolayer and from rod fluctuations perpen-

dicular to the monolayer. These findings can deepen our understanding of why chirality propagates and

of how to control it.

1. Introduction

Colloidal suspensions composed of anisotropic particles can
undergo self-assembly that involves the propagation of chiral-
ity from the single-particle level to the macroscopic level, and
so have emerged as a versatile platform for understanding this
common phenomenon in soft matter.1–5 Cholesteric liquid
crystals are a well-known example, but there are many others.
This includes the behaviour of colloidal suspensions of DNA,
viruses, peptides, polysaccharides and various synthetic
nanoparticles.6–12 While discussion continues about the physi-

cal levers that can be used to control the phenomenon,13–19 its
potential application in areas including optics, catalysis, and
sensing is already being explored,20–22 and will likely accelerate
in light of advances in the synthesis of anisotropic and chiral
nanoparticles.12,23–25 It is therefore important to have a better
understanding of the forces which control the propagation of
chirality in these systems, and which can even drive changes
in surface topology.26

One typical such colloidal suspension is a mixture consist-
ing of rod-like particles and non-adsorbing polymers in a good
solvent. In these rod–polymer mixtures, the polymers, which
behave as random coils with a radius of gyration rg, can
provide an effective attraction between the rods via depletion
forces,27 and thus drive the rods to assemble into diverse
ordered structures.28,29 For example, two-dimensional colloidal
membranes can form in a suspension of filamentous viruses
and dextran.30 These colloidal membranes are liquid-like
monolayer assemblies, and often have a round-shaped edge in
which the constituent viruses are twisted and exhibit a chiral
distribution of their orientations.31,32

This chiral twist is characteristic of these nearly two-dimen-
sional systems and is very different from the more common
cholesteric twist observed in bulk (i.e., three dimensional)
chiral assembly.33 The former one is commonly known as
“double twist” to distinguish it from the cholesteric (single)
twist. The double twist cannot be spatially uniform in the bulk
and always occurs with other deformations, with typical
examples being twist-bend and splay-twist textures.34 While
the driving mechanism for the cholesteric twist is relatively
well understood, it remains elusive for the double twist in
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colloidal membranes and has so far defied a complete expla-
nation, notwithstanding recent attempts. For instance, an
entropically-motivated continuum theory has been developed
to explain the experimental behaviour of these colloidal mem-
branes.35 Briefly, the entropy, manifested through the viruses
as Frank elastic energy for the twist distortion and through the
polymers as an effective surface tension for the excluded
volume, drives the chiral twist of the membranes. This descrip-
tion further assumes that the membranes are incompressible
in the continuum limit.

To test the generality of this theory, and to serve as an
important complementary tool to interpret experimental
results, it would be useful to study such membranes using a
particle-based simulation approach. This would be especially
useful for analyzing small clusters formed at the onset of the
self-assembly process where continuum descriptions often
break down. To our knowledge, however, existing simulation
studies of twisted membranes have been limited to the case of
achiral rods which lack intrinsic chirality.31 In this work, we
therefore study membranes formed by both achiral rods and
chiral rod-like helices36 using Langevin dynamics (LD) simu-
lations and characterise the thermodynamic driving forces
responsible for the propagation of chirality in these systems.

2. Model and method
2.1. Models for rod–polymer suspensions

The rod–polymer suspensions were described using a continu-
ous potential model that approximates the well-known
Asakura-Oosawa-Vrij (AO) model:27,37 (achiral) straight rods,
described as hard spherocylinders, were represented by a rigid
linear chain of length L consisting of overlapping hard spheres
of diameter D (Fig. 1a); chiral rods, described as hard helices,

were modeled as a set of hard spheres having diameter D
evenly arranged along a helical line of contour length L, pitch
p and radius r (Fig. 1b); and the non-adsorbing polymers were
modelled as spheres with diameter d = 2rg that are freely inter-
penetrable to each other but experience a hard repulsion from
the rod spheres. For simplicity, we set the diameter of polymer
spheres d = D. In our simulations, the hard-core potential
between rod–rod (rr) and between rod–polymer (rp) sphere
pairs was replaced by a continuous pseudo-hard-core potential,
i.e., Uαβ(r) = 50(50/49)49ε[(σ/r)50 − (σ/r)49] (αβ∈rr,rp) truncated
and shifted at rαβcut = (50/49)σ, where r is the centre-to-centre
distance between the spheres, ε is the energy parameter, and σ

is the distance parameter with σ = D. Besides, for all rods used
in this work, the distance between consecutive spheres is 0.5D,
which is sufficient to remove side effects associated with
surface roughness (ESI S1†).

While an implicit polymer model for (achiral) straight rods
such as that in refs. 38–40 can allow us to simulate large
systems, the corresponding model for helical rods is lacking
and developing an accurate implicit polymer model for hard
helices, especially in the case of large polymers, could be quite
challenging.41

2.2. Langevin dynamics simulation details

All LD simulations were carried out using LAMMPS42 at a
dimensionless temperature kBT/ε = 1 (where kB is the
Boltzmann constant and T is the temperature). In the simu-
lations, rod and polymer spheres are subjected to three forces:
the conservative force fC computed via the pairwise inter-
actions (i.e., the pseudo-hard-core potential); the friction force
fF = −(m/γ)v with m the mass, γ the damping factor, and v the
velocity of the sphere; and the random force f R /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBTm= Δtγð Þp
with Δt the time step. All simulations were per-

formed in a box with periodic boundary conditions. The vel-
ocity-Verlet algorithm was used to integrate the equations of
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Fig. 1 Spontaneous twist in monolayers of rods. (a) An achiral straight
rod of length L and diameter D. (b) A chiral rod (left-handed helix) with
contour length L, diameter D, pitch p and radius r. θ quantifies the incli-
nation angle of the rod.47 (c and d) Side-view and top-view of (c) left-
handed (L) and (d) right-handed (R) monolayers composed of straight
rods with the color indicating the normalised tilted angle (ψi/|ψmax

i |)
between the rod axis ûi and the nematic director n̂.
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motion with a time step Δt = 0.001τ where τ ¼ D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m= kBTð Þp

,
and the damping factor was set to be γ = 1τ. In all simulations,
we set the masses of one polymer and one rod mp = mr = m = 1.
Simulations of large monolayers were performed in an isother-
mal-isobaric (NPT ) ensemble. A Berendsen barostat with a
time constant of 1τ was applied. Most simulations were initia-
lised with Nr = 480 rods in a single hexagonally packed layer
surrounded by Np = 40 000 polymer spheres in a box with
initial dimensions 44 × 44 × 21D3. Initial configurations with
different chiral twists were also used to confirm that only one
handedness was stable. At least 10 independent simulations
with different initial configurations were performed for each
rod shape, and all simulations were run for at least 5 × 106

steps to collect enough configurations at the equilibrium state.

2.3. Free energy calculations

Simulations used for measuring changes in the free energy
(ΔΩtotal) as a function of the twist (〈ψi〉, see its definition in
next section) were performed in a semi-grand canonical (μpVT )
ensemble with Nr = 2–61 rods. During the simulations, 1000
GCMC insertion and deletion moves were performed every
1000 LD steps to maintain the chemical potential of the poly-
mers (μp). Simulations were initialised with Nr rods in a single
hexagonally packed layer surrounded by ∼2000 polymer
spheres in a box with dimensions 15 × 15 × 15D3. The values
of ΔΩtotal as a function of 〈ψi〉 were evaluated by means of the
umbrella sampling (US) method.43 We imposed a harmonic
spring biasing potential given by U = 0.5k[〈ψi〉 − 〈ψi〉0]

2 on the
system using the Colvars package.44 Here, k is the spring con-
stant, 〈ψi〉0 is the desired twist, and 〈ψi〉 is the actual twist in
the monolayer. Under the biasing potential, the monolayer is
forced to stay in a pseudo-equilibrium state with 〈ψi〉 fluctuat-
ing around 〈ψi〉0. Different twisted states can be described by a
series of values with 〈ψi〉0∈(〈ψi〉min,〈ψi〉max). In our simulations,
k = 1kBT/deg

2, 〈ψi〉min = −24°, 〈ψi〉max = 24°, and the increment
of 〈ψi〉0 was 1° or 2°. For each given 〈ψi〉0, the system was equi-
librated for 2 × 106 steps followed by another 2 × 106 steps pro-
duction run in which data was accumulated every 1000 LD
steps. Finally, the WHAM algorithm45 was used to calculate
the free energy change ΔΩtotal as a function of 〈ψi〉. For each
monolayer, 10 independent simulations were carried out to
obtain good statistics. Meanwhile, to prevent the disassembly
of small monolayers, additional spring forces were imposed on
the rod to move it back when the distance from the centre of
the rod to the centre of the monolayer is larger than a critical
value rc, where rc = 0.75D for Nr = 2, rc = 1.5D for Nr = 7, rc =
3.0D for Nr = 19, rc = 4.5D for Nr = 37 and rc = 6.0D for Nr = 61.
These critical values are larger than the equilibrium radii of
the respective stable monolayers.

2.4. Excluded volume calculations

During the production stage of US simulations, we sampled
configurations every 5000 steps and computed the excluded
volume (i.e., ΔVexc) for polymer spheres due to rods and the
corresponding contributions from the volume and the surface
area of the monolayer (i.e., ΔVbulk

exc and ΔVsurfexc ). For a given con-

figuration, all rod spheres that had at least one polymer neigh-
bour within 1.5D from their centre were classified as surface
rod–spheres, and the rest were classified as bulk rod–spheres.
To compute the excluded volumes, the whole system was
divided into many small cubic bins with an edge length of l =
0.5D. We confirmed that using a smaller value of l (e.g., l =
0.25D, ESI S2†) gave similar results. A bin was occupied by
rods if there was at least one rod–sphere whose centre was less
than 1.0D (corresponding to the polymer diameter) from the
bin’s centre, and the volume of the bin contributed to ΔVsurfexc if
all rod–spheres occupying this bin were surface rod–spheres,
otherwise it contributed to ΔVbulkexc . The final value of the
excluded volume at a given 〈ψi〉 was averaged over all configur-
ations collected at the corresponding 〈ψi〉0. For these calcu-
lations, the Freud Python package46 was used to analyse the
simulation data.

2.5. Suppressing perpendicular fluctuations

In the simulations for monolayers without rod fluctuations
perpendicular to the monolayer, the centres of mass of all rods
were constrained on a common plane via harmonic spring
forces using a spring constant of 1000kBT/D

2.

3. Results and discussion
3.1. Spontaneous twist in monolayers

We first considered monolayers composed of (achiral) straight
rods with length of L = 10D (Fig. 1a). Fig. 1c and d show equili-
brium configurations obtained from simulations with Nr = 480
rods surrounded by Np = 40 000 polymer spheres at the
pressure P = 1.2kBT/D

3. The rods are parallel to the normal axis
(i.e., the nematic director n̂) at the centre, but tilt with increas-
ing magnitude around the radial axis away from the centre. In
multiple independent simulations started with an untwisted
configuration, the monolayer shows nearly equal probability to
end up showing left-handed (L) or right-handed (R) twist.
Such monolayers, with roughly square edge profiles, are also
predicted by the continuum theory and have been observed in
experiments for small colloidal membranes.35

To evaluate the degree of twist in the monolayers, we used
the average tilt angle of rods with respect to the nematic direc-
tor, defined as

ψ ih i ¼ r̂i � n̂� ûið Þ
r̂i � n̂� ûið Þj j cos

�1ð n̂ � ûij jÞ
� �

; ð1Þ

where r̂i is unit vector connecting the center-of-mass of the
monolayer and the center-of-mass of rod i, ûi is the a unit
vector along the long axis of the rod and 〈…〉 indicates an
average over all rods in the monolayer and all configurations
collected at the equilibrium state. 〈ψi〉 is negative for the L
twist and positive for the R twist (Fig. 1c and d).

3.2. Phase diagram of chirality in monolayers

We then studied monolayers of left-handed hard helices with
L = 10 and varying r and p (Fig. 1b). A summary of the results
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obtained from simulations with Nr = 480 at P = 1.2kBT/D
3 is

reported in Fig. 2. In the phase diagram (Fig. 2a), we can ident-
ify the values of r and p that give rise to a chiral twist, whose
handedness with respect to that of the constituent rods is
(i) the same (e.g., r = 0.1, p = 2), (ii) the opposite (e.g., r = 0.1,
p = 12), or (iii) mixed with either R or L (e.g., r = 0.1, p = 22)
(Fig. 2b).

In Fig. 2a, Line (v) is the phase boundary between same
and opposite regimes for the corresponding cholesteric phases
at high volume fractions obtained using density functional
theory.48 We can see that, in comparison, the corresponding
phase boundary for monolayers [i.e., Line (i)] is shifted toward
larger values of p at r > 0.1. Such shifting is also observed in
cholesteric phases when the packing density of helices
increases [compare Lines (iii)/(iv) to Line (v) in Fig. 2a]. Thus
the difference between Line (i) and Line (v) is likely due to the
higher rod packing fraction in the monolayers (0.6–0.7) com-
pared to in the bulk cholesteric phases (0.35–0.5).48

For most helices, however, their monolayer assemblies and
cholesteric phases have the same handedness, supporting the
experimental observation of consistent chirality between the
two for rod-shaped viruses.32 For weakly curled helices in the
mixed regime, the monolayers can be either R or L, while the
cholesteric phases may only exhibit weak opposite handed-

ness.48 As will be elaborated later, the driving mechanism of
this chiral monolayer assembly is very different from the bulk
cholesteric chiral assembly that was originally predicted by
Straley33 and recently confirmed by density functional
theory47,48 and numerical simulations.49

From the phase diagram, we also can see that the degree of
twist (i.e., 〈ψi〉) is a non-monotonic function of the intrinsic
pitch of the rods (i.e., p), which is consistent with the behav-
iour of bulk cholesteric phases formed by hard helices.47,49

Starting at p = ∞ (i.e., straight rods), the magnitude of 〈ψi〉
increases as p decreases, and reaches a maximum for moder-
ately curled helices (e.g., r = 0.1, p = 12 and r = 0.3, p = 16) in
the opposite regime, before decreasing to 0 for helices at the
phase boundary between same and opposite regimes (e.g.,
r = 0.1, p = 4) (Fig. 2b). In the same regime, |〈ψi〉| is small, but
our results at r = 0.1 show that here again |〈ψi〉| first increases
and then deceases as p decreases (Fig. 2a).

3.3. Thermodynamic origins of chiral twist

To study the thermodynamic origins of chiral twist in these
monolayer assemblies, we considered a monolayer of Nr rods
in a sea of polymer spheres at fixed volume V and temperature
T. This system was kept in osmotic equilibrium with a large
reservoir containing the pure polymer solution at fixed fugacity
zp = exp(μp/kBT ) where μp is the polymer chemical potential.
The grand potential of the system can be written as Ωtotal(Nr,V,
T,μp) = Fr − zp(V − Vexc)kBT, where Fr is the Helmholtz energy of
the rods and Vexc is the volume excluded to the polymers by
the hard rods.28,50 The second term on the right is the free
energy of the polymers Ωp. Vexc can be further divided into a
bulk term and a surface term associated to the volume and
surface area of the monolayer, respectively. Thus, we obtain
the change in free energy expressed as

ΔΩtotal ¼ΔFr þ ΔΩp

¼ΔFr þ zpkBTΔVexc
¼ΔFr þ zpkBT ΔVbulk

exc þ ΔV surf
exc

� �
:

ð2Þ

Both ΔFr and ΔVexc depend on the twisting state of rods in
the monolayer. We measured ΔΩtotal as a function of 〈ψi〉 in a
semi-grand canonical (μpVT ) ensemble with fixed Nr at zp = 1.2
(corresponding to P = 1.2kBT/D

3 in the previous simulations).
The twist was constrained using the US approach, while ΔVbulkexc

and ΔVsurfexc were numerically calculated.
We performed a series of US simulations to calculate the

changes in free energy as a function of the twist for mono-
layers formed by Nr = 2–61 rods with varying p (ESI S3†). The
average twist of stable monolayers monotonically increases as
the monolayer size increases, which is qualitatively consistent
with the theoretical description for small colloidal membranes
in which the tile angles of rods at the edge have yet to reach
the limiting value of 90°.35 More importantly, we found that
simulating tens of rods is sufficient to capture the chiral
behaviour exhibited by the large monolayers shown in Fig. 2,
indicating that the chirality of these monolayers is determined
already during the onset of the self-assembly process.

Fig. 2 Phase diagram of chirality in monolayers. (a) The phase diagram
shows the chirality of monolayer assemblies of hard rods with L = 10
and varying r and p at P = 1.2. All symbols are colored according to 〈ψi〉
[eqn (1)] of the corresponding monolayer. The handedness of the mono-
layer with respect to that of the constituent hard rods can be the same
(blue square), opposite (red square), or mixed with either R or L
(bi-colored square). Note that all symbols with r = 0 or p = ∞ represent
the case of straight rods. Lines (i) and (ii) indicate the approximate phase
boundaries for monolayers. Lines (iii–v), provided for comparison, indi-
cate the phase boundaries between the same and opposite regions for
bulk cholesteric phases. Line (iii) is given by the critical inclination angle
θ = 45°,2,39 while Lines (iv–v) were obtained using density functional
theory at (iv) low and (v) high volume fractions, respectively.48 (b) Typical
snapshots of stable monolayers obtained from simulations using
different left-handed helices.
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Fig. 3a shows ΔΩtotal vs. 〈ψi〉 for three typical monolayers
made up of 37 straight rods or left-handed helices. For the
monolayer of straight rods (i.e., r = 0), the two identical
minima at 〈ψi〉 > 0 and 〈ψi〉 < 0 in the curve of ΔΩtotal indicate
the stable twist is equally likely to be R or L. For the mono-
layer of helices, only one local minimum appears in the curve
of ΔΩtotal and is located at 〈ψi〉 > 0 for the left-handed moder-
ately curled helices (i.e., r = 0.1, p = 12) and at 〈ψi〉 < 0 for the
left-handed highly curled helices (i.e., r = 0.1, p = 2), consistent
with the behaviour of the larger monolayers summarised in
Fig. 2a.

The decomposition of ΔΩtotal in eqn (2) reveals that chiral
twist in these monolayers is stabilised by different driving
forces depending on the rod shape. As shown in Fig. 3a(i), the
twist in monolayers of straight rods is driven by the entropy
gain of the polymers with respect to the untwisted state (i.e.,
the decease in ΔΩp), but further twisting beyond the equili-
brium state is also prevented by the rapidly increasing entropy
loss of the polymers at larger |〈ψi〉|. The rod entropy in this

case shows an almost opposite dependence on 〈ψi〉, but the
polymer entropy dominates and stabilises the twist in the
monolayer. For the monolayer of moderately curled helices
[Fig. 3a(ii)], the polymer entropy also dominates and leads to a
single stable twist, but now entropy gain from the rods also
contributes. In sharp contrast, for the monolayer of highly
curled helices [Fig. 3a(iii)], the single stable twist is entirely
driven by the rod entropy, competing against the entropy loss
of the polymers.

The polymer entropy is related to changes in the volume
excluded to polymers (ΔVexc), which is determined by both the
volume and the surface area of the monolayer. Fig. 3b shows
the change in ΔVexc and its volume/surface components when
twisting the three monolayers discussed in the previous para-
graph. This reveals that not only the surface area but also the
volume of the monolayers changes significantly during the
twisting process. Especially for monolayers of straight rods
[Fig. 3b(i)], the decrease in the volume acts as the major
driving force for twisting.

3.4. Comparison with continuum theory

Having shown that different entropy components can drive rod
monolayers to twist, we now compare our results with the con-
tinuum theory developed to describe such colloidal mem-
branes.35 The continuum theory is based on a relatively simple
physical picture (ESI S4†): that the twist is driven mainly by
the entropy gained by the polymers when the membrane
surface area is minimised at constant membrane volume. In
this model, the polymer entropy is invariant under chirality
inversion and does not contribute to the preference of the
handedness, regardless of the chirality of the rods. The pre-
ferred handedness is instead attributed to an entropy term in
the Frank elastic energy of the rods, whose magnitude
depends on the preferred twist wavenumber that implicitly
contains the chiral features of the rods.

In contrast, our simulation results reveal the existence of
more complex thermodynamic behaviour. First, while the
polymer entropy often drives twisting, it can also oppose twist-
ing, with the rod entropy instead driving twisting in those
cases [e.g., Fig. 3a(iii)]. Second, the polymer entropy is asym-
metric under chirality inversion for monolayers of helical par-
ticles and contributes to the preference of the handedness in
these cases [e.g., Fig. 3a(ii)]. This indicates that, at best, the
Frank elastic energy in the continuum theory can depend on
polymer concentration. Third, the constant-volume assump-
tion in the continuum theory clearly breaks down, at least for
the small assemblies considered here, indicating that the vari-
ation of the polymer entropy involves contributions from not
only the surface area but also the volume of the monolayer
(Fig. 3b).

Recent theoretical and experimental work51–53 has also con-
cluded that the volume change upon twist plays a crucial role
in determining the geometry and stability of colloidal mem-
branes of rod-like particles. The geometric frustration between
double-twist and splay causes the twisted monolayer to have a
hyperbolic edge (i.e., “splay-twist” texture51), and the splay of

Fig. 3 The thermodynamic origins of chiral twist in monolayers of
different rods. (a) The changes in free energy (ΔΩtotal, ΔFr and ΔΩp) as a
function of the twist (〈ψi〉) for monolayers formed by Nr = 37 (i) straight
rods (r = 0.0, p = ∞), (ii) left-handed moderately curled helices (r = 0.1,
p = 12), and (iii) left-handed highly curled helices (r = 0.1, p = 2). (b) The
corresponding changes of excluded volume (ΔVexc, ΔVbulk

exc and ΔVsurf
exc ).
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rods away from the monolayer midplane leads to a local
volume expansion, which is most significant at the top and the
bottom of the monolayer edge. Based on this geometric argu-
ment, using a combination of experiments and theory in
which the variation of rod density is considered, Miller et al.53

demonstrated that for the colloidal rafts in the membranes
composed of rigid rods of different lengths, the splay defor-
mation causes expansion and compression of the inner and
outer raft edges, respectively, and their competition results in
spontaneous twist even for achiral systems and non-monotonic
dependence of the stable twist as a function of the raft size. As
for our simulated monolayers which are assembled from
monodisperse rods in non-adsorbing polymers, the diffuse
interfacial region exhibits a clear decline of the rod density
away from the midplane, especially at the edges [Fig. S5(a)†],
but we did not observe an obvious hyperboloid-like shape.
Only when the perpendicular fluctuations of the rods are sup-
pressed and their centers are confined at the 2D midplane
(which is the same as the theoretical model in ref. 53), does
our monolayer exhibit a hyperboloid-like shape [Fig. S5(b)†].
Moreover, in our systems, the total volumes of small mono-
layers (which are made up of 37 rods in our US simulations)
are always decreasing during the initial twisting process
(Fig. S6†), suggesting that the volume expansion due to the
splay deformation does not dominate, at least in these small
monolayers. All these results suggest that the volume change
due to twist is important to the stable texture in various col-
loidal membranes of rod-like particles and thus should not be
ignored in theoretical models.

3.5. The role of perpendicular fluctuations

Finally, we considered a special entropy contribution from
rods related to their fluctuations perpendicular to the mono-
layer. Fig. 4c shows ΔΩtotal vs. 〈ψi〉 for the three example mono-
layers when the centres-of-mass of all rods are constrained to
the midplane of the monolayer. The rod fluctuations out of
the plane are expected to produce surface roughness and so
increase the volume excluded to the polymers. We found that
suppressing the fluctuations resulted in more entropy gain for
the polymers upon twisting for monolayers of straight rods
and moderately curled helices [see larger changes of ΔΩp in
Fig. 4a(i) and (ii) compared to that in Fig. 3a(i) and(ii)]. This
stabilises the twisted states for these monolayers, and even
adds a new metastable twisted state for the monolayer of mod-
erately curled helices [Fig. 4a(ii)]. In contrast, for the mono-
layer of highly curled helices, the polymer entropy increases
dramatically upon twisting when the fluctuations are sup-
pressed, causing the original weakly-stable twisted state to dis-
appear [Fig. 4a(iii)]. These results are consistent with uncon-
strained simulations of large monolayers (Fig. 4b), and clearly
show that rod fluctuations perpendicular to the monolayer
have important effects on the stability of the chiral twists that
depend on the shape of the individual rods.

We note that such contributions from rod fluctuations per-
pendicular to the monolayer are either ignored in continuum
models of colloidal membranes or only taken into account in a

simplistic manner (which is not curliness-dependent)35 (ESI
S4†). Our simulation results, however, indicate that these fluc-
tuations can play a crucial role in the stability of the chiral
twist, and thus may need to be accurately described in order to
predict the stable chiral twist.

4. Conclusions

In summary, we have used a simple model to characterise
spontaneous chiral twist in monolayers assembled from either
achiral or chiral rods in non-adsorbing polymer solutions, and
thus to reveal the thermodynamic driving forces responsible
for chirality propagation from single particles to their assem-
blies. Note that the chiral twist discussed in this work is the
double twist, which is distinct from the cholesteric (single)
twist.34

Depending on the geometry of the constituent rods, their
monolayer assemblies exhibit a broad range of chiral behav-
iour, including variations in handedness and twist magnitude.

Fig. 4 The role of perpendicular fluctuations. (a) The changes in free
energy (ΔΩtotal, ΔFr and ΔΩp) as a function of the twist (〈ψi〉) for mono-
layers formed by Nr = 37 (i) straight rods (r = 0.0, p = ∞), (ii) left-handed
moderately curled helices (r = 0.1, p = 12), and (iii) left-handed highly
curled helices (r = 0.1, p = 2) when the fluctuations perpendicular to the
plane of the monolayer are artificially suppressed. (b) Typical snapshots
of large equilibrated monolayers formed by Nr = 480 rods (corres-
ponding to those in a), obtained from simulations without rod fluctu-
ations perpendicular to the monolayer.

Paper Nanoscale

16842 | Nanoscale, 2022, 14, 16837–16844 This journal is © The Royal Society of Chemistry 2022

Pu
bl

is
he

d 
on

 0
8 

N
ov

em
be

r 
20

22
. D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
A

 C
A

 F
O

SC
A

R
I 

V
E

N
E

Z
IA

 o
n 

12
/5

/2
02

2 
7:

29
:5

3 
A

M
. 

View Article Online

https://doi.org/10.1039/d2nr05230j


Compared to the constituent rods, the (achiral) straight rods
and weakly curled helices form monolayers with either R or L
twist (i.e., the mixed regime), moderately curled helices form
monolayers with the opposite handedness (i.e., the opposite
regime), and highly curled helices form monolayers with the
same handedness (i.e., the same regime). Moreover, the degree
of twist in the monolayers is a non-monotonic function of the
intrinsic pitch of the helices, with the most twisted monolayers
forming from moderately curled helices [Fig. 2(a)].

The thermodynamic forces responsible for spontaneous
chiral twist also vary dramatically between different particle
shapes. In the mixed and the opposite regimes, the twist in
monolayers is mainly driven by the polymer entropy [Fig. 3a
(i)]. As the rods becomes more curled, the rod entropy also
contributes to the twist, and only the twisted state with the
opposite handedness remains stable [Fig. 3a(ii)]. For even
more curled helices, only one weakly twisted state with the
same handedness is stable, and is entirely driven by the rod
entropy [Fig. 3a(iii)].

Our simulation results also indicate important contri-
butions from the volume change upon twist and the rod fluc-
tuations perpendicular to the monolayer that have so far been
ignored in continuum theories. Our preliminary results,
obtained from Monte Carlo (MC) simulations, for rods held
together by explicit attraction rather than polymer depletion
indicate a similar complexity (ESI S6†). Overall, we find
increasing deviations from current continuum theory as
the attractive forces holding the rods together become weaker,
regardless of whether they are due to direct energetic or
indirect entropic effects (ESI S6†). All these results
contribute to our understanding of chirality transmission
across scales when chiral objects assemble into larger
aggregates.

While our simulations were based on a simplified model
for rod-like colloids (i.e., hard spherocylinders and helices),
they clearly show that twisted colloidal membranes can also be
formed by helical rods, which could be an interesting behav-
iour to investigate in future experiments by using similar
natural and synthetic particles.1,54–56 Our current work also
offers a helpful reference for understanding the behaviour in
more complex systems. It would be very useful to consider
models which are closer to the chiral rods (e.g. fd-virus and
DNA origami rods) used in experiments of colloidal mem-
branes. For example, using a “straight and helically-decorated”
model2,57 would allow us to compare the computational and
experimental results more directly. Meanwhile, recent experi-
ments have shown that the shape fluctuation of chiral rods
also dramatically affects their assembled structures,58 thus it
would be interesting to consider the flexibility of rod-like par-
ticles in future work.
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