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ABSTRACT
The phase diagram of hard helices differs from its hard rods counterpart by the presence of chiral “screw” phases stemming from the charac-
teristic helical shape, in addition to the conventional liquid crystal phases also found for rod-like particles. Using extensive Monte Carlo and
Molecular Dynamics simulations, we study the effect of the addition of a short-range attractive tail representing solvent-induced interactions
to a fraction of the sites forming the hard helices, ranging from a single-site attraction to fully attractive helices for a specific helical shape.
Different temperature regimes exist for different fractions of the attractive sites, as assessed in terms of the relative Boyle temperatures, that
are found to be rather insensitive to the specific shape of the helical particle. The temperature range probed by the present study is well above
the corresponding Boyle temperatures, with the phase behaviour still mainly entropically dominated and with the existence and location of
the various liquid crystal phases only marginally affected. The pressure in the equation of state is found to decrease upon increasing the frac-
tion of attractive beads and/or on lowering the temperature at fixed volume fraction, as expected on physical grounds. All screw phases are
found to be stable within the considered range of temperatures with the smectic phase becoming more stable on lowering the temperature.
By contrast, the location of the transition lines do not display a simple dependence on the fraction of attractive beads in the considered range
of temperatures.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0168766

I. INTRODUCTION

Guided by site-specific directional interactions, colloidal patchy
particles have been shown, both numerically1,2 and experimen-
tally,3 to self-assemble into higher order structures that cannot
be obtained by other synthetic routes, thus paving the way to
obtain unique morphologies for various technological and biomed-
ical applications. Among the key factors controlling the phases and
the morphologies of the self-assembled structure are the location,
number, and size of the patches, as well as the strength and range
of interactions. Together with thermodynamic conditions, such

as the effective temperature and pressure, the number of patches
and their arrangement form a relatively small set of parameters
that can be tuned to guide the self-assembly toward the desired
structure.

Janus colloids4–6 are spherical particles having one attractive
patch on an otherwise repulsive particle surface that demonstrate
how the heterogeneity and directionality of interactions can be
designed to achieve a prescribed bulk material with specific prop-
erties. Notwithstanding the challenges in the synthesis and func-
tionalization of such colloids, several techniques have been devised
that demonstrate the ability to control these processes. A spectac-
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ular example of this is provided by the experimental self-assembly
of spherical triblock Janus particles into a two-dimensional kagome
lattice,7 matched by numerical analysis.8

Within the general class of Janus colloids where the coverage,
i.e., the fraction of attractive surface patch compared to the total sur-
face, can be tuned from 0% (hard spheres) to 100% (fully-attractive
hard spheres), the Janus limit of equal coverage with just two patches
of equal size, one attractive and one repulsive (50% coverage), has
been shown to display a particularly interesting behaviour.4,5,9 For
this system, a gas of micelles is formed at low temperature and
low density that has lower energy than the coexisting homogeneous
liquid formed at the same temperature and higher density. The cor-
responding gas-liquid coexistence curve in the pressure-temperature
plane is negatively sloped, mimicking the anomalous behavior found
in water.10

While controlling the interactions plays a paramount role in
guiding the self-assembly process, the role of excluded-volume
interactions provided by the shape of the colloidal particles has
been recognized to be equally important, especially at high den-
sity.2 Surprisingly complex and remarkably diverse colloidal crys-
tals can self-assemble driven purely by particle shape anisotropy
and the tendency to maximize the entropy, with this somewhat
counter-intuitive mechanism effectively behaving as an entropic
bond.11 The combination of directional interactions and shape
anisotropy is clearly possible, and examples in the literature include
colloidal dumbbells,12 “Mickey Mouse” shaped colloids,13 Janus
dumbbells,14–16 rods,17 ellipsoids18,19 and lobed particles,20,21 and
polyhedral nanoparticles.22

Colloidal helices are another example of colloids that can be
synthesized23 and designed from first principles.24 Simple hard
helices formed by spherical fused beads (colloids) arranged into a
helical shape with tunable pitch and radius represents a paradig-
matic example of entropically driven self-assembly providing a
rich and unconventional behaviour25–31 that can also find biolog-
ical representation in colloidal suspensions of semiflexible virus
particles.32–34 Elongated hard helices with large aspect ratio form
liquid crystal phases that are similar to their hard rods counter-
part. Unlike hard rods, however, hard helices are chiral objects and
hence can form chiral phases (e.g. a chiral nematic also known as
a cholesteric phase) whose origin can be traced back to the shape
and the chirality of the helices. More specifically, it was found that
the nematic phase was either cholesteric, where the main director is
rotating about an axis perpendicular to the original plane, or screw-
nematic, where the secondary director is rotating about an axis
parallel to the main director.28,29,31 Even the smectic phase was found
to display screw-like behaviour under some circumstances.26,27,30

The entropy-driven formation of chiral nematic phases is not
limited to helical shapes but includes other interesting exam-
ples, such as particles with twisted polyhedral shape35 and curled
hard-rods.36

The aim of the present work is to study Janus helices, which
combine enthalpic bonding guided by directional interactions with
the tendency of helices to maximize the number of available
microstates driven by entropy. This is a natural extension of pre-
vious work on the phase behavior of Janus spheres4,5 and hard
helices.25–27,30,31 As in the case of Janus spheres, the attractive sites
represents interactions induced by the presence of the solvent on
different moieties of the helix. Starting from the case of hard

helices, we progressively add a short-range attraction, in the form
of a square-well tail, to some of the beads forming the helices up
to the case where all beads are attractive. The main aim of the
present study is to discuss the effect on the liquid-crystal phases
displayed by hard helices with the addition of a weak and short-
range attraction to some of the beads forming the helices; and at
the same time to extend previous Monte Carlo simulations based
on hard core interactions with the addition of Molecular Dynamics
simulations that allow for faster equilibration and more extensive
analysis at high volume fraction. The Janus helices considered in
the present study have not been studied previously, but some com-
parison can be made with the behaviour of fully attractive37 and
Janus rods38 in the limit of very slender helices. The case of a weak
and highly localized directional attractive site is also of experimen-
tal interest and has already been studied both experimentally and
numerically.17,39,40

To set the stage, it is important to identify the regimes to be
probed. For spherical Janus colloids, the interesting regime occurs
at very low temperatures and low densities where self-assembly
competes with the possibility of observing gas-liquid and liquid-
solid transitions. For athermal hard helices, the interesting regime
occurs at high pressures (and hence high densities) where the
isotropic phase is progressively replaced by liquid crystal phases,
having positional disorder but orientational order. Before prob-
ing the challenging combined regime of low temperature and high
pressure, it is desirable to understand the effect of including a tem-
perature dependence (through the addition of an attractive part to
the potential) on the hard helices liquid crystal phases, as well as
the effect of the coverage. This will be systematically done in the
present study by considering coverages χ ranging from hard helices
(0%χ = 0) to fully attractive square-well (SW) helices (χ = 100%),
and includes the single site attractive case (χ = 6.7% coverage), and
the Janus limit (χ = 50%). Particular emphasis will be devoted to
understanding the stability of the peculiar screw-like nematic phase
that, so far, has only been found for hard helices. The comple-
mentary limit of low temperature and low density (or pressure)
will be discussed in a companion paper41 that will focus on Janus
rods, thus removing the additional complexity stemming from the
chirality of the helices. The shape dependence is also known to
play an important role in the case of hard helices.26,27,29,31 Hence,
the present study will be confined to the case of slender helices
that can be more easily contrasted with results from the Janus
rods.

The outline of the paper is as follows. Section II presents the
model (Sec. II A) and the required order parameters and correlation
functions (Sec. II B). In order to identify the temperature regime far
from a possible gas-liquid transition and clearly study competition
between self-assembly and liquid crystal formation, a preliminary
calculation of the second virial and the corresponding Boyle tem-
perature (the temperature of vanishing second virial coefficient) is
carried out in Sec. III A as a function of the coverage. Most of the
successive analyses presented in Sec. III will then refer to tempera-
tures well above the Boyle temperatures, where entropic effects due
to excluded volume dominate, with a special focus on the location
of the liquid crystal phases and the effect of the temperature and
increasing attraction on the equation of state. Finally, in Sec. IV we
summarise the key findings from this work and discuss directions
for future work.
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FIG. 1. From hard helices to fully attractive square-well helices. Red beads have
HS potential, green beads SW potential. The helices shown have R = 0.2D and
p = 8D with a train of ns = 15 spherical beads arranged in a helix with contour
length L = 10D, where D is the diameter of each bead, which is the case consid-
ered in the present study. Intermediate cases correspond to 1/15 (≈6.7%) and
8/15 (≈50%) attractive sites. The 50% case corresponds to the Janus limit.

II. THEORY AND METHODS
A. Model

Hard helices have been implemented as a line of 15 fused hard
spherical beads of diameter D (the unit of length) rigidly arranged
into a helicoidal shape, with a contour length fixed to L. On changing
the radius R and pitch p at fixed total contour length L, the shape of
the helical particle can be tuned from a straight rod to very wound
coils.

We define the coverage 0 ≤ χ ≤ 1 as the fraction of attractive
sites, with χ = 0 (0% coverage) representing the HS case, χ = 0.5
(50% coverage) representing the Janus limit, and χ = 1.0 (100% cov-
erage) the SW fully attractive case. Figure 1 shows the progressive
increase of the coverage in the specific case of a slender helix with
R = 0.2p = 8D.

Following past studies,26,27,30 we can organize the shapes into
three different classes - small, medium, and large curliness - identi-
fied by the radius R and pitch p of the helical shape, that are related
at a fixed total contour length.25 In the present study, we focus on
the case of small curliness corresponding to R = 0.2D and p = 8D,

as it can be easily related to its Janus rod counterpart. The contour
length has been fixed to L = 10D, which is sufficiently large to probe
all of the liquid crystal phases for both hard spherocylinders42 and
hard cylinders.43 As in our previous studies,26,27,30 we have assumed
ns = 15 spherical beads forming the helices, some of which will be
made attractive as detailed below.

Two complementary methods have been used to study the
phase behaviour of this system. The first is isobaric-isothermal
(NPT) Monte Carlo (MC) simulations using a shape-adapting
rectangular box with periodic boundary conditions, which is an
extension of the approach used in previous investigations of hard
helices.25–27,30 Here, the excluded volume between different beads
belonging to different helices separated by a distance r is modelled
as a pure hard-sphere (HS) potential

ϕHS(r) =
⎧⎪⎪
⎨
⎪⎪⎩

+∞, r < D
0, r ≥ D

(1)

and this was the only interaction appearing in past work. When
attraction is added, we assume that two attractive beads belonging
to different helices will interact via a square well (SW) interaction

ϕSW(r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

+∞, r < D
−ε/n2

s , D ≤ r < Rc

0, r ≥ Rc

(2)

where an attraction having strength −ε/n2
s is added in the presence

of a favourable bond and no corresponding overlap. The range of
attraction Rc clearly plays a fundamental role, especially for non-
convex objects such as helices: when Rc is large, all attractive beads
on different helices are able to interact, whereas only single pairs of
beads interact in the presence of very short-range attraction. As in
the case of Janus spheres,4,5 we expect an intermediate regime given
by Rc = 1.5D to be the most representative, and this value will be
used in all NPT-MC simulations of the present study.

It is worth stressing that each interaction is normalized by the
maximum possible number of pair-wise interacting spheres n2

s so
that for a 100% (SW) case, ε is the energy scale of the problem. This
choice allows to more easily compare helices with different number
of sites.

In NPT-MC simulations, at constant temperature T and con-
stant pressure P, each MC move consists of N attempts to move
a randomly-selected particle and a single volume change attempt.
A particle move attempt consists of simultaneous random trans-
lation of the center of mass and a random rotation about it. We
have used two sets of simulations with different numbers of helices
to test for finite size effects. In the “small-size” simulations, we
used N = 972 helices with 3 × 106 steps for equilibration and an
additional 106 steps as a production run, in line with previous sim-
ulations of hard helices.25,26,30 In the “large-size” simulations, we
used N = 2400 helices with an equilibration time of 6 × 106 MC steps
and an additional 106 steps to collect statistics. The initial condi-
tion was a low-density array of parallel helices, with all the attractive
parts (if any) initially pointing along the +z “up” directions. We also
performed Molecular Dynamics (MD) simulations at constant vol-
ume and temperature (NVT) for N = 4068 helices using the software
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package Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS)44 employing the Nosé-Hoover thermostat45 to keep
the temperature fixed. For MD simulations, we used a combination
of a Weeks-Chandler-Anderson (WCA) potential46 to mimic hard-
core repulsion and a pseudo-square-well (PSW) potential47 to mimic
attraction:

ϕ(r) =
⎧⎪⎪
⎨
⎪⎪⎩

ϕPSW(r) between attractive sites

ϕWCA(r) otherwise
(3)

where

ϕWCA(r) = 4ε[(
D
r
)

12
− (

D
r
)

6
+

1
4
] (4)

which vanishes for r ≥ 6
√

2D and acts on the repulsive-repulsive and
repulsive-attractive bead pairs, and

ϕPSW(r) =
ε
2
[(

D
r
)

n
+

1 − e−λ(r/D−1)((r−Rc)/D)

1 + e−λ(r/D−1)((r−Rc)/D)
− 1] (5)

which act only among the attractive beads, where n and λ are para-
meters that tune the shape of the well. Here we have used λ = 50
and n = 200 so that ϕPSW(r) approximates a square-well tail while
allowing for efficient equilibration. This is the same potential used
in the companion paper,41 where it is shown to reproduce the phase
behavior of the SW-line model37 to within a small (<5%) shift of the
phase boundaries to higher volume fraction. Slightly different poten-
tials have been used to model similar systems,48–50 but we expect the
results to depend only weakly on the details of the model potential.
Natural reduced units are T∗ = kBT/ε for temperature and for pres-
sures PD3

/kBT in the case of HS interactions and PD3
/ε in the case

with attractions. We will also use the fraction of the total volume
occupied by the helices, η = Vocc/V , as a measure of their concentra-
tion. Here Vocc = v0N, where v0 is the volume of a single helix and N
is the number of helices.25 Our time unit in the NVT-MD analysis is
(m/kBT)1/2D, where m is the mass of each bead that is taken so that
the mass of the helix has a unit value. As in the MC case, the initial
configuration was a crystal phase with all helices perfectly aligned
in an AAA stack with all of the attractive patches directed along the
positive z direction. To test for possible dependence on the initial
conditions, we also considered a situation where the attractive beads
were aligned up in one layer and down in the immediately successive
layer, so that the attractive beads on the helices belonging to the two
layers were initially in contact.

Snapshots are color-coded according to the helix orientation in
the case of hard (HS) helices (as in previous work),26,27,30,31 as well
as for fully attractive (SW) helices, and according to the coverage
(green attractive, red repulsive sites) in the case of partially attractive
helices, in analogy with the spherical counterpart.4,5

B. Order parameters and screw-like liquid crystal
phases

The presence of different phases with specific features requires
the definition of order parameters able to distinguish between
them. To this aim, we have used a combination of global order
parameters and specific correlation functions that can act as local

order parameters43 that have been introduced recently in the lit-
erature. In the following, we will be using capital letters (N̂ and
Ĉ), to identify principal directions of the liquid crystal phases, and
lower case letters for local axes identifying the orientation of the
helices. The position and orientation of each helix in space is iden-
tified by its center of mass r and by three unit vectors û, v̂, and
ŵ. Here, û is identifying the helix main axis, whereas ŵ and v̂
are two unit vectors, perpendicular to each other and to û, that
identify the azimuthal orientation of the helix in this perpendic-
ular plane. As only one of the two is required for this aim, we
will focus on ŵ in the following [see Fig. 2(a)]. The onset of a
nematic phase is best identified by evaluating the Veilliard-Baron
tensor51

Qû = ⟨
1
N

N

∑
j=1
[

3
2

ûjûj −
1
2

I]⟩ (6)

where ûi is the unit vector identifying the orientation of the i-th
helix in space. The maximum eigenvalueΛu1 gives the nematic order
parameter ⟨P2⟩, ≈1 for a nematic phase and ≈0 for an isotropic
phase, and the corresponding eigenvector gives the nematic director
N̂ [see Fig. 2(b)]. Because of the uniaxial symmetry of the helix and
the traceless character of tensor Qû, the other two eigenvalues Λu2

= Λu3 will be identical and negative. For hard helices, an additional
chiral nematic phase was recently unveiled using both numerical
simulations26,27,30 and density functional theory.28,29,31 In this phase,
henceforth denoted as screw-like,26,27,30 the secondary director Ĉ
rotates perpendicularly to the main director N̂ (defined as the eigen-
vector of Λu1 ) in a helical fashion as a screw in a cork [see Fig. 2(b)].
It is important to stress that this chiral nematic phase is specific for
helical particles and is different from the cholesteric phase, com-
mon to general chiral particles, where it is the main director N̂ that
revolves with its tip forming a helix around an axis Ĥ that is perpen-
dicular to the plane of the original direction of N̂ [see Fig. 2(c)]. One
of the interesting outcomes of the analysis of the screw-like nematic
phase for hard helices stems from the coupling between translation
of the helix along the main director N̂ and a rotation of the secondary
director Ĉ as depicted in Fig. 2(d). This coupling has been observed
in both simulations26–28,30,31 and in experimental studies of helical
flagella.52,53

In order to identify this particular screw-like phase, it is
convenient to introduce a new Veilliard-Baron tensor

Qŵ = ⟨
1
N

N

∑
j=1
[

3
2

ŵjŵj −
1
2

I]⟩ (7)

which is the counterpart of Qû given in Eq. (6). Again for the two-
fold degeneracy of the uniaxial symmetry of the nematic phase, there
will be two positive identical eigenvalues Λw1 = Λw2 and a third neg-
ative eigenvalue Λw3 due to the traceless nature of the tensor. Hence,
the screw-like phase is characterized by a breaking of the uniax-
ial symmetry and the onset of a characteristic secondary director
Ĉ along which all secondary axes ŵ of the helices preferentially
align. This, in turn, is signalled by a removal of the degeneracy
(Λw1 ≠ Λw2) which can be used as a order parameter for the onset
of the screw-like phase.

An alternative, already used in past work,26,27 is given by the
screw-order parameter ⟨P1c⟩ (see supplementary material, Sec. SS1
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FIG. 2. (a) The local frame for the helical model used in this work.25 Here û and
ŵ identify the main and secondary helical axes; (b) The screw-like phase where
the secondary director Ĉ rotates in a helical fashion about the main director N̂; (c)
The cholesteric phase where the main director N̂ rotates in a helical fashion about
an axis Ĥ that is perpendicular to the original plane; (d) The coupling between
translation along the main director N̂ and rotation of the secondary director Ĉ
characteristic of the screw-like phase. The three helices have a relative vertical
displacement of z = 0, z = p/2, and z = 3p/2 respectively, where p is the pitch
of the helix and hence their ŵ directors rotate by π/4 about the main director N̂
every p/2. Note that in this case their main axes û are all parallel to the phase
main director N̂. All cases shown here refer to the most slender helix considered
with R = 0.2D and p = 8D.

for this and additional order parameters). Here, the basic idea is
that if all the ŵi align along the secondary director Ĉ then ⟨P1c⟩ ≈ 1,
whereas ⟨P1c⟩ ≈ 0 for randomly oriented ŵi. In the present formu-
lation, we have implemented an additional layering procedure that
avoids the artificial unscrew procedure used in past work,26,27,30 but
it has its own shortcomings. The main one is that it is very sensitive
to the choice of the width of the layering.

A global parameter ⟨τ1⟩ can also be implemented to identify
the onset of the smectic phase SmA as defined in Ref. 42 (see also
supplementary material, Sec. SS1). Again ⟨τ1⟩ ≈ 1 in the smectic
phase and ⟨τ1⟩ ≈ 0 otherwise. While very useful, it requires prelim-
inary identification of an optimal width, which makes its imple-
mentation very time consuming when analysing many different
cases.

Finally, the SmA-SmB transition can be identified by the use of
the hexatic order parameter ⟨ψ6⟩

43 (see also supplementary material,

Sec. SS1). With this definition, ⟨ψ6⟩ ≈ 1 for hexagonal in-plane
ordering and ⟨ψ6⟩ ≈ 0 otherwise. A bead is defined to be a nearest-
neighbor of a bead belonging to another helix if the distance between
the two beads is within the first minimum of the perpendicular
correlation function (defined further below). As this value clearly
depends (albeit not very strongly) on the specific considered state
point (i.e. temperature and pressure or volume fraction), even this
calculation is not free from ambiguities.

In addition to global order parameters, local order parameters
in the form of suitably defined correlation functions can also be
exploited to pin down the exact location of the transition lines. We
briefly recall them here and refer to recent past literature for further
details (see e.g. Ref. 43 and references therein).

A general tendency to form local order can be inferred from the
radial distribution function

g(r) =
1

4πr2N
⟨

1
ρ∑i≠j

δ(r − rij)⟩ (8)

where rij = ∣rij∣ = ∣rj − ri∣. In the case of an anisotropic object such as
the helices presented in this study, two additional correlation func-
tions prove particularly useful to identify liquid crystal phases. The
first is the perpendicular correlation function

g�(r�) =
1

2πLr�N
⟨

1
ρ∑i≠j

δ(r� − r�i j)⟩ (9)

where r� is the projection of r in the plane perpendicular to the
nematic director N̂, and r� is its magnitude. An oscillatory behavior
of g�(r�) with specifically located peak points indicates hexagonal
orientational order.

The second useful function is the parallel correlation function

g∥(r∥) =
1

2L2N
⟨

1
ρ∑i≠j

δ(r∥ − r∥i j)⟩ (10)

where r∥ = (r ⋅ N̂)N̂ and r∥ is its magnitude. An oscillatory behavior
of the g∥(r∥) is indicative of the presence of SmA that becomes SmB
in the presence of a simultaneous oscillatory behavior of g�(r�). The
peak distance in g∥(r∥) is a measure of the distance between layers.
Note that while g(r) is normalized in such a way that it tends to 1 as
r/D→∞, g�(r�) and g∥(r∥) are normalized such that they tend to
0 as r�/D→∞ and r∥/D→∞.

The screw-correlation function has also proven useful in this
framework. It is defined as

g1w(r∥) = ⟨
∑i≠j δ(r∥ − rij ⋅ N̂)(ŵi ⋅ ŵj)

∑i≠j δ(r∥ − rij ⋅ N̂)
⟩ (11)

and it highlights the tendency of the helices to have their secondary
axes ŵ aligned.

For hard helices it has been argued, based on numerical evi-
dence, that the nematic phase can be either screw-nematic NS or
chiral nematic (cholesteric) N, and not both.31 Whether this will
also be true for the Janus helices remains to be seen, and for this
reason we shall use the general terminology of nematic N for indi-
cating a phase that is not screw-nematic, and which is associated
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with structureless behavior of gŵ
1,∥(r∥). Note that here and above the

short-hand notation∑i≠ j ≡ ∑
N
i=1∑

N
j=1
j≠i

has been used.

In general, we found the use of the global screw-nematic order
parameter ⟨P1c⟩, the smectic order parameter ⟨τ1⟩, and the hexatic
order parameter ⟨ψ6⟩ (see supplementary material, Sec. SS1) to be
less informative than the local correlation functions, so they were all
monitored but not reported here.

C. Diffusion coefficients
Diffusion was also monitored via simulations. The common

definition of the diffusion coefficient D is:

D = lim
t→∞

1
6t
⟨R2
(t)⟩ (12)

where the factor 6 stems from having 2 possible directions in each
of three dimensions. In systems where there is a preferred direc-
tion, it is useful to monitor the parallel and perpendicular diffusion
coefficients

D∥ = lim
t→∞

1
2t
⟨R2
∥(t)⟩ (13)

D� = lim
t→∞

1
4t
⟨R2
�(t)⟩ (14)

Here, ⟨R2
(t)⟩ is defined as the mean-square displacement of the cen-

ter of mass of the helix at time t with respect to the initial time t = 0,
and ⟨R2

∥(t)⟩ and ⟨R2
�(t)⟩ are their counterpart projections along the

parallel (to N̂) and perpendicular directions, respectively. Notice that
this initial time is the initial monitoring time after equilibration,
unless stated otherwise.

D. Virial expansion and Boyle temperature
The virial expansion for pressure P is given by

βP
ρ
= 1 + ρB2(T) + ρ2B3(T) + ⋅ ⋅ ⋅ (15)

The Boyle temperature TB is defined by the condition B2(TB)

= 0.54 For T > TB, B2(T) > 0 and repulsions dominate; For T < TB,
B2(T) < 0 and attractions dominate. Hence TB represents the transi-
tion temperature between entropically and energetically dominated
regimes.

III. FROM HARD TO FULLY ATTRACTIVE HELICES
We have carried out ramps in both pressure (for NPT-MC sim-

ulations) and volume fraction (for NVT-MD simulations). In the
first case, we considered 10 different reduced pressures ranging from
0.2 to 2.0 for each of the N = 2400 NPT-MC simulations and ranging
from 0.1 to 1.0 for the N = 972 NPT-MC simulations. In the second
case, we considered 12 different volume fractions from η = 0.1 to
η = 0.65. In both cases, the simulations were repeated for three dif-
ferent (reduced) temperatures T∗ = 1.0, 0.5, 0.1, and four different
coverages, from the case of hard helices to the case of fully attractive
helices, passing through the single attractive bead case (out of 15)
and the Janus limit of approximately half attractive beads. The three

temperatures were selected on the basis of the analysis of the second
virial coefficients reported below.

A. Second virial coefficient B 2 and Boyle temperature
T∗B at different coverages

It proves convenient to compute the reduced second virial coef-
ficient black B∗2 = B2/D3 as a function of the reduced temperature
T∗, as well as the reduced Boyle temperature T∗B , where B∗2 (T

∗
B ) = 0,

as a function of the coverage χ. To this aim, we have followed
past suggestions55,56 and recall the definition of the second virial
coefficient

B2(T) = −
1
2 ∫

dr⟨ f12(r, û1, û2)⟩û1 ,̂u2
(16)

where we have introduced the Mayer function54

f12(r, û1, û2) = e−βϕ(r,̂u 1 ,̂u 2) − 1 (17)

as well as the average over the angular orientations û1, û2 of the two
helices

⟨. . .⟩û =
1

4π ∫
dû . . . (18)

Here ϕ(r, û1, û2) is the sum of all potentials between two sites on dif-
ferent helices, r being the displacement between the center of mass
of the two helices and û1 and û2 defining their orientations in space.
This integration was performed numerically by generating a large
number Nc of independent configurations of two identical helices in
a cubic box of volume V .

B2 can then be computed as14,55

B2(T) = −
V

2Nc
⟨ f12⟩r,̂u1 ,̂u2

(19)

Note that the average over all possible r has been included in the last
average appearing in Eq. (19).

For calculation speed, note that the Mayer function can assume
three different types of values depending on the relative position
r12 ≡ r of the two closest beads between the two helices:

f12(r, û1, û2) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−1 if helices overlap i.e. r < D

enc/n2
s T∗
− 1 if no overlap and D < r < Rc

0 r > Rc

(20)

where r is the smallest distance between two spheres on different
helices, and nc is the number of square-well contacts (D < r < Rc
between attractive spheres on two different helices).

In the case of a hard overlap, the Mayer function can be imme-
diately evaluated, with ϕ→∞ forcing the value of the corresponding
Mayer function to −1, which we then add to the accumulated aver-
age. In the case of no overlaps, but at least one interaction, care must
however be exercised in doing this calculation in the presence of
multiple sources of attraction. As −ε/n2

s is the energy contribution
from each favourable interaction [see Eq. (2)], the energy must first
be summed with a double loop over the beads belonging to the two
helices, adding the −ε/n2

s energy contribution from each favourable
interaction, before evaluating the Mayer function.
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FIG. 3. (a) The second virial coefficient B2 as a function of the reduced tempera-
tures T∗ at different coverages χ for R = 0.2D and p = 8D; (b) The reduced Boyle
temperature T∗B as a function of the coverage χ for the different shapes of the
helix. The curve labelled as “RODS” depicts the Boyle temperature derived by the
vanishing of B2 for rods with length L/D = 10.

By gradually varying the temperature T until B2 vanishes, the
Boyle temperature TB was obtained.

We explicitly checked that the limiting behaviour at high tem-
peratures is consistent with Onsager’s celebrated limit for hard
spherocylinders56,57

B2 = π(
2D3

3
+ LD2

+
L2D

4
) (21)

As a representative calculation, Fig. 3(a) shows the results of the
reduced second virial coefficient B∗2 as a function of the reduced
temperature T∗ for helices with R = 0.2D p = 8D. Figure 3(b) reports
the corresponding Boyle temperature as a function of the cov-
erage χ for all of the helical shapes considered in this study. A
comparison with the straight rod limit p→∞ is also displayed.
Supplementary material, Table S1 reports the numerical values of
the Boyle temperatures in the case of helices with R = 0.2D and
p = 8D.

Two main insights can be extracted from this analysis. First,
there appear to be no major differences between the three shapes
and the straight rod counterpart at this first approximate level, thus
justifying our choice of focusing on one specific shape. Second,

the Boyle temperature varies from T∗B ≈ 0.04 for the fully attrac-
tive SW case to T∗B ≈ 0.0015 in the 6.7% limit where only one bead
is attractive. As the Boyle temperature signals the transition from
an entropy-dominated regime (T∗ ≫ T∗B ) to an energy-dominated
one (T∗ ≪ T∗B ), this means that significantly low temperatures are
necessary to observe competition between the liquid crystal phases
observed in the purely repulsive hard helices case,25–28,31 and a
possible gas-liquid transition akin to that observed in the spheri-
cal Janus counterpart.4,5 In the present study, this low T∗ regime
will not be addressed as its analysis will be the subject of a com-
panion paper on Janus rods.41 Rather, we will focus our attention
on the effect of a relatively weak attraction to the liquid-crystal
phase behaviour by probing temperatures in the range 0.1 ≤ T∗

≤ 1.0. As T∗ = 0.1 is larger then TB by a factor ≈2 for fully attractive
helices but by a factor ≈100 for helices with a single attractive site
(≈6.7% case), a correct interpretation of the results must be drawn
accordingly.

B. The hard helices case
Before discussing the case of attractive helices, we now briefly

recall the hard helices case discussed in previous work26,30 with a
two fold aim. First, it will allow a quantitative comparison in terms
of finite size within the same isobaric-isothermal NPT-MC sim-
ulations, from N = 972 of past work to N = 2400 of the present
study. Second, it will allow to test for consistency by a comparison
with isochoric-isothermal NVT-MD calculations using N = 4068
helices. In all cases, the standard initial condition was taken as a
system of initially parallel helices assembled at different densities.
Supplementary material, Fig. S1 shows the approach to equilibrium
for both NPT-MC and NVT-MD simulations. This shows that the
NPT-MC simulations have difficulty reaching complete equilibra-
tion at the highest considered pressures despite the relatively long
equilibration times (5 × 106 MC steps). In contrast, the NVT-MD
simulations appear unaffected by this shortcoming, and so results
on partially attractive helices mainly rely on them. It is reassuring,
however, that the two sets of simulations provide compatible results
when both are equilibrated.

Figure 4(a) reports the equation of state (reduced pres-
sure PD3

/kBT vs packing fraction η) from both NVT-MD with
N = 4068 helices (green triangle) and NPT-MC calculations with
N = 2400 (red squares), and contrasted with the results of the smaller
size NPT-MC calculations with N = 972 (black spheres) used in
previous studies26,27,30). Color coded vertical lines indicate the puta-
tive transitions from isotropic I to nematic N (blue line), nematic
N to screw-nematic Ns (green line), screw-nematic Ns to screw-
smectic A SmAs (magenta line), screw-smectic A SmAs to polar-
smectic B SmB (orange line) as identified in previous work.26,27,30,31

Our present estimates confirm these findings. As anticipated, the
isotropic I to nematic N (blue line) can be located by consid-
ering the nematic order parameter ⟨P2⟩ that also coincides with
the maximum eigenvalue Λu1 of Qû [Eq. (6)]. This is shown in
Fig. 4(b) for both NVT-MD and NPT-MC calculations, updated
and original, as in Fig. 4(a). The upswing of the curve at η ≈ 0.25
marks the end of the isotropic phase and the onset of the nematic
one.

In supplementary material, Fig. SV we show results for the
equation of state from both NPT-MC and NVT-MD simulations
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FIG. 4. (a) Equation of state PD3/kBT as a function of the packing fraction η
for the case of hard helices. The three sets of points refer to Monte Carlo sim-
ulations with N = 972 helices (black circle) and N = 2400 (red squares), and to
MD simulations with N = 4068 (green triangles). Parallel dotted lines indicate the
transitions identified in past work (see e.g. Ref. 31) and refer to the I-N isotropic-
nematic transition (blue line), N-Ns nematic-screw-nematic transition (green line),
Ns-SmAs screw-nematic-screw-smectic A transition (magenta line), SmAs-SmB
screw-smectic A-polar-smectic B transition (orange line); (b) The ⟨P2⟩ order para-
meter as a function of the packing fraction η for the same three sets of simulations
as in part (a).

at different temperatures. The closest match between the simulated
state points appears to be when T∗ = 1.0 as one could have expected
from the outset. We will then use this temperature value when
contrasting the two different techniques hereafter.

Supplementary material, Figs. SVII and SVIII report the equi-
librium behaviour of the three eigenvalues Λui (i = 1, 2, 3) of Qû
[Eq. (6)] as a function of η, as obtained from the NPT-MC and
NVT-MD calculations. This shows that the maximum eigenvalue
Λu1 progressively increases from ≈0 for η small to ≈1 for large η.
Accordingly, the other two eigenvalues Λu2 and Λu3 also move from

FIG. 5. Representative snapshots (top and side views) of state points appearing in
Fig. 4 as obtained by MD N = 4068. Different helices are color-coded according to
the orientation û of the helix main axis, and both top and side views are depicted
in all cases, with tick red dotted lines separating different phases. (a) I state point
η = 0.15; (b) Ns state point η = 0.40; (c) SmAs state point η = 0.45; (d) SmB
state point η = 0.65. Screw phases are not easily identifiable here as they are
best illustrated in Fig. 6. The light colored backgrounds that appear behind the
phase identification letters are consistent with the phases in Fig. 4(a) and thick red
dashed lines separate different phases. Visualizations here and below were done
using the Ovito Package.58

≈0 for η small to ≈ − 0.5 for large η. Their equality is an indication of
the uniaxial symmetry of the system at this stage.

Close-up snapshots of the representative state points are
reported in Fig. 5, with different helices color-coded according to
their directions. Both top and side views are depicted in all cases.
The four depicted snapshots refer to states with η = 0.15 (isotropic I
phase), η = 0.40 (screw-nematic Ns phase), η = 0.45 (SmAs phase),
and η = 0.65 (smectic B SmB phase). The presence of the screw-
nematic phase is not obvious in Fig. 5(b) and can be more easily seen
in Fig. 6, where the same snapshots have been color-coded accord-
ing to the local tangent rather than the local director û. Particularly
evident are the stripes in the η = 0.40 (screw-nematic Ns phase),
η = 0.45 (SmAs phase), with the screw-like nature of the SmAs origi-
nating from the screw-like nature of the Ns phase). Also the smectic
B SmB phase presents a striped pattern, indicating that all ŵ within
a layer are in phase. However, in contrast with its SmAs counterpart,
stripes in different layers are uncorrelated. This was rationalized26,27

on the basis that the driving force originating the SmB phase stems
mainly from the requirement of minimizing excluded volume at the
expenses of orientational ordering.

Further insights on the presence of the screw-nematic Ns phase
can be seen in Fig. 7 where a subset of helices initially equilibrated
at η = 0.40 and confined within a given layer have been highlighted
via a different color (dark magenta) and they can be seen to visibly
diffuse up and down along the main director N̂ (as is also visible in
Movie1 reported in supplementary material). The three snapshots
of Fig. 7 show one particular helix colored in white that is seen to
perform a screw-like motion akin to that found for helical flagellae
by Barry et al.52 and more recently by Yardimci et al.53 As helices
tend to align due to an increasing concentration, they loose rota-
tional entropy. This can be compensated by corkscrewing up and
down along the main director N̂.
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FIG. 6. Same as in Fig. 5 but now with the beads colored according to the local
tangent as in Refs. 26 and 27. The color changes as the tangent moves along the
helix and thus the periodicity of the color pattern is equal to the pitch of the helix.
Supplementary material, Fig. SII shows how the tip of the local tangent performs a
conical path along the helix. Note that this modality mirrors the experimental one
used in Ref. 52. Here only side views are presented and the light colored back-
ground is color-coded as in the phase diagram of Fig. 4(a). The periodic stripes
appearing here in the Ns and SmAs phases are indicative of screw-like phases.
The stripe periodicity of the screw-nematic Ns phase is equal to the pitch p of the
helix.

FIG. 7. A visual representation of the screw-like mechanism within a screw-nematic
phase Ns at η = 0.40. Helices colored in dark magenta in (a) are originally aligned
in a layer and then eventually dispersed within the computational box by the
dynamics. Within this framework, the white helix is shown to diffuse down from
(b) to (c) to (d) via a translation (along the N̂ axis) coupled with a rotation (about
the main axis n̂ of each helix) as a screw in a bolt, in close analogy with the
experiments in Refs. 52 and 53.

The exact location of the phase boundaries can be conve-
niently obtained by considering the correlation functions discussed
in Sec. II B. Figure 8(a) displays the radial distribution function
of the center-of-masses of the helices, as a function of r/D for
the same state points reported in Fig. 5. The color coding of the
different curves is the same as the phases reported in Fig. 4(a).
Starting from η ≈ 0.4, the first and second shell peaks begin devel-
oping before additional crystal-like peaks appear at η = 0.65. The
location of the peaks along the r axis nearly matches those of the
perpendicular correlation function gpe ≡ g

�
(r�) along the rpe ≡ r�

axis [Fig. 8(b)], thus locating parallel neighbouring helices with
an in-plane hexatic ordering characteristic of the SmB phase (see
below).

The onset of smectic phases is signalled by the parallel cor-
relation function gpa ≡ g

∥
(r∥) [see Fig. 8(c)] that develops marked

oscillating from η = 0.45 onward, in agreement with Fig. 4(a). Note
the significant range difference of the rpa ≡ r∥ axis compared to the
case of r [Fig. 8(a)] and rpe [Fig. 8(b)] that is clearly due to the large
aspect ratio of the helices that require an asymmetric computational
box elongated along the N axis. As the helices were originally in
a screw-like phase, the obtained phase is a SmAs, as indicated by
the magenta vertical line of Fig. 4(a). At η ≈ 0.5 the system under-
goes a SmAs to SmB transition [see orange line in Fig. 4(a)], with
in-plane hexagonal symmetry combined with alignment of all sec-
ondary vectors ŵ within the plane. Here, however, entropic gain in
off-setting parallel alignment between consecutive layers disfavors
AAA stacking as well as the screw-like ordering, so that consecu-
tive layers have secondary directors Ĉ [see Fig. 2(b)] that become
uncorrelated, mirroring the loss of AAA alignment for the positional
ordering.27 The in-plane hexagonal ordering is clearly visible in the
perpendicular correlation function g

�
(r�) displayed in Fig. 8(b),

with the well-developed peaks at η = 0.65 showing a characteristic
1 :
√

2 periodicity.
Another interesting point stems from the analysis of the equi-

librium values of the three eigenvalues Λwi (i = 1, 2, 3) of Qŵ
[Eq. (7)] as a function of η. This analysis mirrors the same anal-
ysis on the eigenvalues of Qû discussed earlier. This is reported
in supplementary material, Figs. SVII and SVIII for NPT-MC and
NVT-MD respectively. Complementary to that analysis, here the
two largest eigenvalues Λw1,2 are positive ≈0.25 and identical (i.e.
degenerate), with the third eigenvalue negative and equal to ≈ − 0.5
for unscrew phases. Once again, the degeneracy of the first two
eigenvalues stems from the uniaxial symmetry of the nematic phase
and breaks down at the onset of the screw phases, where Λw1 ≠

Λw2 for volume fractions from η ≈ 0.40 to η ≈ 0.55, in good agree-
ment with the phase diagram of Fig. 4(a) and with evidence from
the corresponding correlation function previously discussed. It is
important to stress that in all cases, the entries of the tensor matri-
ces are averages over different configurations, and hence fluctuations
from one calculation to another are certainly possible.

The use of MD simulations also makes it possible to calculate
the overall diffusion coefficient D [defined in Eq. (12)], the parallel
diffusion coefficient D∥ [Eq. (13)], and the perpendicular diffusion
coefficient D� [Eq. (14)]. These were calculated after equilibration
and are plotted in Fig. 8(d) as a function of the packing fraction
η. As expected on physical grounds, all three diffusion coefficients
markedly decrease as the system transitions from the isotropic phase
into the nematic phase at η ≈ 0.25. The diffusion coefficients are
still significant in the screw-nematic Ns, as expected from Fig. 7,
eventually becoming negligibily small as the system enters the smec-
tic phase (η ≥ 0.45). Interestingly, the lateral diffusion appears to
be more pronounced than the longitudinal diffusion (i.e. along the
main director N̂) after entering into the nematic phase, whereas it
is subdominant just before the I-N transition. No evidence of either
intralayer or interlayer diffusion is observed in any of the smectic
phases.59

The final point concerns a further quantitative evidence of the
screw-like phases. In line with previous observations, this can be also
highlighted using the g1w(r∥) function defined in Eq. (10). This is
reported in Fig. 9 for NPT-MC simulations with N = 2400 helices
at the same state points as in Fig. 8 where the mapping between
reduced pressures and volume fractions is obtained using the equa-
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FIG. 8. Fully repulsive helices represented by a WCA model at T∗ = 1.0. (a) Radial correlation functions g(r) as a function of the reduced distance r/D between the centers
of the helices at different state points; (b) Perpendicular correlation function g(rpe) as a function of the reduced perpendicular distance rpe/D where rpe ≡ r�; (c) Parallel
correlation function g(rpa) as a function of the reduced parallel distance rpa/D where rpa ≡ r∥. Color coding of the different state points here is the same as in Fig. 4; (d)
Overall diffusion coefficient D as a function of the packing fraction η, contrasted with its perpendicular Dpe ≡ D� and parallel Dpa ≡ D∥ components.

tion of state Fig. 4(a). Here clear, regular oscillations are visible
starting at a reduced pressure P∗ = 1.0, roughly corresponding to
η = 0.40 and hence to the onset of the screw-nematic phase. The
period also coincides with the pitch p = 8D, in agreement with past
studies.26,27 We also found this calculation to be less accurate when
carried out at constant volume.

C. Hard helices with a single attractive bead
(χ = 6.7%)

We now consider the case where some of the beads are attrac-
tive and apply the same machinery discussed so far for hard helices.
We start by considering in detail the case of a single attractive
bead, corresponding to approximately χ = 6.7% coverage (see Fig. 1).
Figure 10 reports the reduced pressure P∗ = PD3

/ε as a function of
the volume fraction η (the equation of state) for different reduced
temperatures T∗ = kBT/ε: (a) T∗ = 1.0, (b) T∗ = 0.5, and (c) T∗

= 0.1. Colored vertical bars identify the phase boundaries as was

done for the hard helices case [Fig. 4(a)], and representative snap-
shots are included to highlight specific state points. Note that, at
variance with the hard helices case displayed in Fig. 5, here dif-
ferent beads are color-coded according to their interactions, with
green for attractive beads and red for purely repulsive ones. In
all cases, the initial conditions have been taken as a set of paral-
lel helices with all attractive tips aligned “up.” A different choice
for the initial condition will be discussed later on in Sec. III D. It
is worth noticing that the introduction of a fraction of attractive
beads breaks the “up-down” symmetry of the original hard helices
case, and introduces a preferred sense. As in the hard helices case,
we report results from small (N = 972 black solid circles) and large
(N = 2400 red solid squares) NPT-MC simulations, along with
extensive NVT-MD (N = 4068 green solid triangle up). The “small”
NPT-MC simulations are used to contrast with the original simu-
lations with hard helices. It is important here to stress once more
that all these temperatures are well above the corresponding Boyle
temperature TB(χ = 6.7%) ≈ 0.0022 (see Sec. III A) that is nearly
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FIG. 9. NPT-MC results with N = 2400 helices for g1w(rpa) as a function
of rpa ≡ r∥ for the same volume fractions as in Fig. 8. Note that we have
used the same color coding though the mapping between reduced pressures
and volume fraction is approximate as inferred from the equation of state
[see Fig. 4(a)].

2 orders of magnitude smaller compared with the minimum tem-
perature considered here. The goal here is to study the stability of
the various liquid crystal phases – and specifically the screw phases
found in the case of hard helices, against the introduction of a weak
attraction.

In Figs. 10(a)–10(c), we observe the same sequence of liq-
uid crystal phases with nearly the same location of the phase
boundaries as in the case of hard helices [compare with Fig. 4(a)].
As a general rule, we observe a shift of the smectic phases to
lower η upon decreasing the temperature. In particular the onset
of the SmAs phase is shifted from ≈0.45 at T∗ = 1.0 [Fig. 10(a)]
to ≈0.37 at T∗ = 0.1 [Fig. 10(c)]. Likewise the SmB phase at T∗

= 0.1 starts at ≈0.45 [Fig. 10(c)] as opposed to at ≈0.50 at T∗ = 1.0
[Fig. 10(a)]. The actual effect of the temperature can be inferred
from Fig. 10(d) that summarizes the behavior of the reduced pres-
sure P∗ = PD3

/ε as a function of the volume fraction η for all three
considered temperatures. Here, we note a decrease of the pressure
at a given packing fraction η on lowering the temperature, a trend
that can be ascribed to the increasing contribution of the attrac-
tive interactions. Here the phase boundaries were located using
the same methodology previously presented for fully repulsive hard
helices.

As in the fully repulsive hard helices, the SmAs phase is screw,
in the sense that successive layers have in-plane positional disor-
der of the center-of-mass of the helices in that plane, but aligned
helix secondary axes ŵ along the phase secondary axis Ĉ that
rotate for successive layers along N̂ [see Fig. 2(b)]. Hence, the
nematic region is split in two sub-regions, a conventional nematic
N – presumably a cholesteric one when seen at a larger scale,
at lower volume fraction, and a screw-nematic Ns at higher vol-
ume fraction whose boundary is only mildly dependent on the
temperature.

Supplementary material, Movie2 shows evidence of the screw-
nematic phase for the single attractive bead along the lines used in
the case of fully repulsive hard helices (Movie1), and supplementary
material, Fig. SVI provides the corresponding relevant snapshots,
the counterpart of Fig. 7.

Also worth noting is the increasing tendency of the NPT-MC
simulations to become kinetically trapped. This is especially visi-
ble at T∗ = 0.1 [Fig. 10(c)], where the pressure in both the N = 972

and N = 2400 NPT-MC simulations deviates substantially from the
NVT-MD results at high volume fraction. This deviation is likely
related to the difficulty of the NPT-MC runs in reaching full equili-
bration and thermalization (see supplementary material, Fig. SIII).
This issue becomes even more severe as the fraction of attractive
beads increases, and hence NPT-MC results will not be discussed
further in this study.

This single attractive bead case is particularly interesting
because at very low temperatures [lower that the Boyle temperature
TB(χ = 6.7%) ≈ 0.0022], we expect the formation of micelles at low
densities replacing the isotropic phase. This is indeed what occurs
for Janus rods with a single attractive site (see companion paper41).
In contrast, at the temperatures considered in the present study, the
liquid crystal phases are modified but not destabilized as the attrac-
tive energy is insufficient to compensate for the higher entropy of
the thermotropic liquid crystal phases. Hence, the phase behavior
of these systems is still mainly determined by entropy. At lower
temperature, however, there should be a transition region in which
these two opposite tendencies compete and give rise to interesting
effects. This can in fact be seen in the companion paper on Janus
rods.41

D. Stability with respect to the initial conditions
In principle, it would be desirable to have a final configuration

that is fully independent of the initial conditions. In practice, how-
ever, this is hardly achievable for the most compact configurations,
even in the absence of attractive interactions27 or for hard sphe-
rocylinders.42 We therefore explicitly checked for this dependence
and report it in Fig. 11 by considering two different initial condi-
tions. In the first case, used in all of the cases discussed so far, all
helices are oriented with the attractive beads initially pointing up
(i.e. along the +z direction). We denote this as the parallel ini-
tial condition. In the second case, the odd layers have initially
helices oriented with the attractive beads pointing up, whereas in
the even layers all helices have their attractive beads initially point-
ing down (along the −z direction). We denote this as antiparallel
initial condition.

In the top panels of Fig. 11, we show two equilibrated configu-
rations obtained at the same volume fraction of η = 0.35 and at the
same temperature T∗ = 0.1 (corresponding to a nematic N phase),
but starting with parallel (left) and antiparallel (right) initial con-
ditions. Very reassuring, the two final configurations are essentially
indistinguishable and hence equivalent from a statistical viewpoint.
However, this turns out not to be the case for the most demand-
ing case of η = 0.65 (bottom panel) corresponding to a SmB phase,
where it is clear that initial parallel (left) and antiparallel (right) con-
figurations are essentially preserved upon equilibration to the local
thermodynamically stable states. As mentioned, this is a very com-
mon feature of particles with a significant aspect ratio, and it should
not come as a surprise, since we have also considered the most chal-
lenging situation of T∗ = 0.1. We further note that the total energy
of the antiparallel conformation (right) is lower than the parallel
one (left) at temperature T∗ = 0.1, thus indicating that the antipar-
allel configuration becomes more stable than the parallel one as the
temperature decreases. In our companion paper41 on Janus rods, the
antiparallel layered configuration appears spontaneously upon com-
pression. These findings suggest that the screw-nematic phases that
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FIG. 10. Reduced pressure P∗ = PD3/ε as a function of the packing fraction η for the case of a single attractive bead (χ = 0.67) at reduced temperatures T∗ = kBT/ε
corresponding to (a) T∗ = 1.0, (b) T∗ = 0.5, and (c) T∗ = 0.1. Representative snapshots of each phase are shown for specific state points. Attractive beads are colored in
green, hard (repulsive) beads in red. Results are shown for both small (N = 972 black solid circles) and large (N = 2400 red solid squares) NPT-MC simulations, as well as
for even larger NVT-MD simulations (N = 4068 green solid triangles). (d) Comparison of the NVT-MD results at different reduced temperatures T∗ = 1.0, 0.5, 0.1.

we discussed so far should not be affected by the energetic preference
of the antiparallel conformation, but the smectic ones might.

E. Janus (χ = 50%) and fully attractive (χ = 100%)
helices

It is instructive to inspect what happens to the phase behavior
upon increasing the number of attractive beads (i.e. the coverage χ).
Two cases appear to be particularly interesting.

The first case is when approximately half of the beads of the
helices are attractive (8 out of 15), which we refer to as the Janus
limit (χ ≈ 50%, see Fig. 1). The χ = 50% limit has shown a partic-
ularly rich phenomenology both, in the case of single colloids4,5

and in the case of dumbbells.15,16 At very low temperatures – lower
than the corresponding Boyle temperature T∗B (χ ≈ 50%) ≈ 0.015
– one might expect the formation of bilayers where two attractive
halves of two helices bind to form a non-covalent bond. This is
indeed what happens for Janus rods (see the companion paper41).
However, as in the single attractive bead case (χ = 6.7%) dis-

cussed earlier in Sec. III C, the range of temperatures considered
in this work, 0.1 ≤ T∗ ≤ 1.0, is too high to destabilize the entrop-
ically dominated phases found in the hard helices counterpart.
This is clearly visible in Fig. 12(a), which reports the equation of
state at T∗ = 0.1. Compared to the single attractive bead counter-
part [see Fig. 10(c)], the phase boundaries are all at very similar
positions. Supplementary material, Fig. SIX shows the potential
energy per helix Ep/N as a function of the volume fraction η from
the NVT-MD simulations at T∗ = 0.1. As expected, for nearly all
coverages χ this potential energy is positive and increases with
increasing η. Not surprisingly, in the case of fully attractive helices
χ = 100% case, the energy is slightly negative and decreases on
increasing η.

The second case is the extension of the attractive well to
all beads (SW χ = 100%). This leads to the equation of state dis-
played in Fig. 12(b), again for T∗ = 0.1. Unlike the partially attrac-
tive cases of χ = 6.7% and χ ≈ 50%, but in line with purely hard
helices, the inserted snapshots representing selected state points
are here colored according to the direction û of the main axis
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FIG. 11. Test of the stability with respect to the initial conditions. Top panel left: final
equilibrated conformation at η = 0.35 (nematic phase) obtained with all helices
initially parallel (i.e. with attractive tips all pointing along the same direction); Top
panel right: Same but with antiparallel initial conditions (attractive tips up for odd
layers and down for even layers); Bottom panel left: Same as before with η = 0.65
(SmB phase); Bottom panel right: Same with antiparallel initial conditions. In all
cases, the lowest temperature T∗ = 0.1 has been considered.

compared with the main director N̂. This case is particularly inter-
esting because of its dual nature. On the one hand, it represents
a smooth extension of the previous χ = 6.7% and χ ≈ 50% cases
in terms of coverage. However, in contrast to the χ = 6.7% and
χ ≈ 50% cases, each helix can be flipped upside-down with no
effect on the mesophase, thus restoring the up-down symmetry. A
comparison with the Janus case [Fig. 12(a)] shows that all tran-
sitions have shifted to slightly higher volume fraction, increasing

their region of stability and nearly reproducing the same results
of the fully repulsive hard helices [see Fig. 4(a)]. This “re-entrant”
behaviour can likely be ascribed to restoring the up-down symmetry
as remarked.

F. Temperature and coverage dependence
We can now summarize our findings on the equation of state,

and the location of the transitions, in terms of the temperature and
coverage dependence. Figure 13 reports such a comparison for cov-
erages from hard to fully attractive and temperatures from T∗ = 1.0
to T∗ = 0.1. This shows that the pressure increases upon increasing
the temperature (at a given volume fraction and coverage) or upon
decreasing the coverage χ (at a fixed temperature). Again, this can
be rationalized on the basis that decreasing the temperature and/or
increasing the fraction of attractive beads increase self-attraction and
hence decreases the pressure. How the phase boundaries depend on
coverage is more complex. At the lowest considered temperature
T∗ = 0.1, the phase boundaries of the partial coverage cases (single
attractive bead and Janus helices) do not display any dependence
on the coverage. Somewhat surprisingly, the phase boundaries of
the fully attractive case appear to have nearly identical locations as
the case of hard helices. A summary of the coverage dependence
of the various transitions can be found in supplementary material,
Fig. SX.

A progressive destabilization of the isotropic I phase upon
cooling was previously observed in a system of square-well prolate
spherocylinders with a continuous line of interaction sites.37 Note
however that in that case the I boundary does shift, but not because
the nematic N and smectic Sm phases become more stable. Their
phase diagram shows that the Sm phase disappears at low T and that
the shift in the I boundary is due to growth in size of a coexistence
region rather than the N phase. We further note that study cannot
be compared quantitatively with the present one as L/D = 5 in that
case. This point is further discussed in the companion paper,41 which
considers Janus rods with L/D = 5.

FIG. 12. Reduced pressure PD3/ε as a function of packing fraction η from MD-NVT simulations with N = 4068 helices at T∗ = 0.1. (a) Case of Janus helices (8/15 attractive
beads, χ = 50%). Green = attractive beads, Red = hard core beads. (b) Case of fully attractive (SW) helices (χ = 100%). Here helices are colored according to their
orientations. Representative snapshots at indicated state points are also displayed.
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FIG. 13. Reduced pressure P∗ = PD3/ε as a function of the packing fraction from
MD simulations at different reduced temperatures T∗ = kBT/ε = 1.0 (solid cir-
cles), T∗ = kBT/ε = 0.5 (solid squares), and T∗ = kBT/ε = 0.1 (solid triangles).
Different coverages χ = 6.7% single attractive bead (black), χ = 50% Janus case
(red), and χ = 100% SW case (green) are also shown. For reference, the hard
helices case χ = 0% (solid circle magenta) is also reported. In this case, the
natural unit P∗ = PD3/kBT has been used for the pressure.

IV. CONCLUSIONS
In this study we considered the phase behavior of a system

of helices formed by a set of fused beads arranged into a pre-
scribed helical shape. Unlike previous studies that focused on hard
helices,26,27,30,31 here some of the beads on different helices attract
one another, with the fraction of attractive sites ranging from 100%
coverage to 0% (pure hard helices). Using this system, we attempted
to address the following two questions: (1) How does attraction
change the phase behavior from that of hard helices?; and (2)
What regions of the parameter space are worth studying in more
depth?

Starting from the known phase diagram of the hard helices
case, we studied the effects of coverage and temperature on the
phase behavior. This was done in regimes well above the Boyle
temperature but at sufficiently low temperature (in some cases) for
attraction to compete with the purely entropic effects that deter-
mine the ordering of hard helices. As the Boyle temperature for
low coverage (e.g. T∗B ≈ 0.0015 in the case of a single attractive site)
is considerably smaller than at high coverage (e.g. T∗B ≈ 0.04 for a
system of fully attractive hard helices), the results obtained at the
considered temperatures (T∗ = 0.1, 0.5, 1.0) probe different multi-
ples of T∗B , but with the common denominator of being all in the
entropically dominated regime.

In this work, we focused on a slender helical shape with
radius R = 0.2D and pitch p = 8D on the basis that this is nearly
a rod-like particle but still chiral. We also extended past studies
of hard helices in terms of the number of particles, the maxi-
mum volume fraction, and by including a study of the particle
dynamics via the use of molecular dynamics simulations. This
allowed us to check previous results and revealed possible kinetic
trapping in MC simulations stemming from the combined effects
of hard helical interactions, high aspect ratio, low temperature
and high packing fraction. We found that while fully consis-
tent for hard helices and high temperatures, NPT-MC calculations
become problematic at low temperatures and very high densi-
ties because of slow equilibration and kinetic trapping. For this

reason, in the present study we mainly used molecular dynam-
ics simulations with slightly softer potentials, which allow for
parallel simulation, in addition to providing access to particle
dynamics.

In the case of hard helices, we confirmed previous results25–28,31

and provided further evidence on the presence of screw-like phases,
both nematic and smectic, originating from the helical shape. We
then extended the model to include attraction between a fraction
of the beads forming each helix, and studied the stability of the
various phases upon lowering the temperature and increasing the
fraction of attractive beads. In all cases, the range of temperatures
selected were well above the corresponding Boyle temperatures,
meaning that the attractive interactions add an energetic component
to the free energy but that the phase behaviour is still dominated by
entropy. As a result, we found a pressure decrease at fixed volume
fraction on lowering the temperature and/or increasing the fraction
of attractive beads, a fact that can be easily rationalized with the
progressive increase of the relative balance between attraction and
repulsion, but only small changes in the phase behavior. While the
location of the nematic phases are only mildly affected, we observed
a shift of the screw and the smectic phases to lower volume frac-
tion. However, this shift appears to be non-monotonic, with the fully
attractive helices behaving differently from the partially attractive
counterparts. For the case of a single attractive bead, we observed no
tendency of the liquid crystal phases to compete with the formation
of micelles at the considered temperatures. We do expect the onset of
micelles below the Boyle temperature at sufficiently low densities, as
this is what occurs for Janus rods studied in the companion paper.41

Using the same rationale, we expect Janus helices where half of the
beads are attractive to display competition between the formation of
lamellar phases and the liquid crystal phases observed in this work
at sufficiently low temperature, again discussed in the companion
paper on Janus rods.41

There are many avenues that the present study (as well as
the companion paper on Janus rods41) open for future analy-
ses. As this study focused on very slender helices, it would be
interesting to check what happens to much curlier helices where
the in-plane locking of neighboring parallel helices is expected to
be much more effective at reducing the rotational entropy, thus
further promoting the screw-like mechanism which stabilizes the
screw-like phases observed here. Another point which deserves fur-
ther attention is the effect of attraction on the cholesteric phase
observed for hard helices.28,31 Finally, a recent study by some of
the current authors50 has highlighted the important role that heli-
cal shape and chirality has on the twisting of monolayer assemblies
of rod-like or helical particles. It would therefore be interest-
ing to extend the low temperature analysis carried out for Janus
rods to Janus helices, thus probing the complementary regime
for helices. We plan to pursue these investigations in a future
study.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional results in the case
of fully repulsive hard helices and hard helices with a single attrac-
tive beads and for representative movies highlighting the screw-like
nematic phase in these two cases.
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