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Tatjana Škrbi�c1,2

1Department of Physics and Institute for

Fundamental Science, University of Oregon,

Eugene, Oregon, USA

2Ca’ Foscari University of Venice, Department

of Molecular Sciences and Nanosystems,

Venice, Italy

3European Centre for Living Technology

(ECLT), Venice, Italy

4Vietnam Academy of Science and

Technology, Institute of Physics, Hanoi,

Vietnam

5University of Padua, Department of Physics

and Astronomy, Padua, Italy

Correspondence

Jayanth R. Banavar, Department of Physics

and Institute for Fundamental Science, 1258

University of Oregon, Eugene, OR

97403-1205, USA.

Email: banavar@uoregon.edu
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Abstract

We present a model, based on symmetry and geometry, for proteins. Using elemen-

tary ideas from mathematics and physics, we derive the geometries of discrete heli-

ces and sheets. We postulate a compatible solvent-mediated emergent pairwise

attraction that assembles these building blocks, while respecting their individual sym-

metries. Instead of seeking to mimic the complexity of proteins, we look for a simple

abstraction of reality that yet captures the essence of proteins. We employ analytic

calculations and detailed Monte Carlo simulations to explore some consequences of

our theory. The predictions of our approach are in accord with experimental data.

Our framework provides a rationalization for understanding the common characteris-

tics of proteins. Our results show that the free energy landscape of a globular protein

is pre-sculpted at the backbone level, sequences and functionalities evolve in the

fixed backdrop of the folds determined by geometry and symmetry, and that protein

structures are unique in being simultaneously characterized by stability, diversity, and

sensitivity.
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1 | INTRODUCTION

A globular protein is a heteropolymer, whose “primary” sequence of

amino acids, encoded by the DNA, is subject to evolution and is a

molecular target of natural selection.1–4 Proteins, the amazing molecu-

lar machines of life, are complex with myriad degrees of freedom.

Linus Pauling5,6 launched the field of molecular biology by developing

the principles of quantum chemistry and applying them to predict the

structures of protein modular building blocks, helices, and strands

assembled into sheets. Pauling and others, most notably Ramachan-

dran7 and Rose,8–12 adopted a backbone-based view, focusing on the

role of the backbone atoms, the avoidance of steric clashes, and

the importance of hydrogen bonds. A side chain-centered view has

highlighted the vital importance of the role of the solvent, the distinct

hydrophobicity/hydrophilicity of amino acid chains, and the need to

sequester the hydrophobic core from the solvent, resulting in an ele-

gant picture of a folding funnel landscape.13–15 Our work here is built

on efforts over the last two decades, using ideas from geometry and

symmetry16–37 that view a protein as a tube of nonzero thickness.

Proteins are distinctive chains with many special attributes. They

are complex—there are 20 types of amino acids with side chains with

distinct physical and chemical attributes. The behavior of a protein is

governed by myriads of interactions among the constituent atoms and

the surrounding water molecules. These interactions include van der

Waals forces, hydrogen bonding, electrostatics, hydrophobicity medi-

ated by the surrounding water molecules, and the imperative need to
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avoid steric clashes. Despite this bewildering complexity, globular pro-

teins share an impressive array of common characteristics. Small glob-

ular proteins fold rapidly and reproducibly into their native state

structures.38 The native state folds are evolutionarily conserved39–41

and are immutable. All protein native state structures are made of

common building blocks: helices and zig–zag strands assembled into

almost planar sheets. Many protein sequences adopt the same native

state conformation. The native state structure of a protein is robust to

significant amino acid mutations42,43 except at certain key

locations.44–46 Under some circumstances, protein chains exhibit a

tendency to aggregate creating water-insoluble amyloid.47–49 Such

amyloid formation is implicated in debilitating diseases. One cannot

but wonder whether these common attributes of globular proteins

reflect a deeper underlying unity in their behavior.

A great simplification in determining protein structure is the

neat separation between the roles of backbone and side chain

atoms. Hydrogen bonding between the backbone atoms is largely

responsible for the creation of the common “secondary” building

blocks of protein structure. The side chains stay out of the way in

both building blocks but play an important role during their assem-

bly into the folded “tertiary” state. Protein structures are modular,

and their assembly is facilitated by loops, which are nonrepetitive

structural elements.50–55 Because of the modularity of protein

structures, the total number of distinct native state folds total just

several thousand56–59 in all instead of the vastly larger number that

one would expect for a featureless conventional chain molecule of

this length. The geometries of the native state structures provide

the context for the variety of interactions between proteins and

other cell products. In our picture, the textbook wisdom4 that

“sequence determines structure” is changed to “a sequence

chooses its native state structure from a menu of modular native

state structures comprised of the common building blocks of all

globular proteins.”20 The number of distinct folds is significantly

smaller than the number of protein-like sequences that fit into

them just as the number of items on a restaurant menu is typically

much smaller than the number of patrons, providing an explanation

for why machine learning is wonderfully suited to, and enormously

successful in, matching a sequence to its native state

structure.60–62 Indeed, recent work has demonstrated the success-

ful determination of atomic structure from a single sequence with a

large protein transformer language model, with 15 billion parame-

ters, without the need for evolutionary information present in mul-

tiple sequence alignments.63

We will build on the premise that the determination of the native

state structure of a protein sequence entails two parallel processes.20

All proteins share a common backbone except when a glycine or pro-

line is involved. The first process results in the interactions between

the backbone atoms creating the building blocks of protein structures

independent of the amino acid sequence. The second process consists

of the specific side-chain interactions choosing the best fit assembled

native state structure from the menu of topologically distinct folds,

already pre-sculpted at the backbone level.

As noted earlier, hydrogen bonding plays a major role in secondary

structure formation. However, it is no longer the sole or even the domi-

nant interaction promoting the assembly of the tertiary structure. One

may consider an isotropic attractive interaction, that aims to surround a

Cα atom with as many others as possible within a given range, as a surro-

gate for the plethora of actual interactions.64,65 However, this would

conflict with the specific anisotropic action of the hydrogen bonds.

Indeed, common sense suggests that any kind of generic isotropic attrac-

tion, mimicking the hydrophobicity mediated by the water, would desta-

bilize both the topologically one-dimensional helix and strand into three-

dimensional compact structures. The challenge is to determine how the

constraints imposed by the common backbone attributes yielding the

pre-sculpted landscape along with sequence specificity compatibly yield

the choice of the most appropriate fold. Here we identify a simple way

of capturing the emergent interactions in both steps of the two-step pro-

cess in a harmonious manner. Our overarching goal is to elucidate the

simplest set of governing principles that dictate protein behavior.

2 | MATERIALS AND METHODS

2.1 | Protein geometry

Our approach is informed by some gross features of empirical data on

proteins acquired over the decades and stored in the PDB.66 These

features are not as detailed as those used by Pauling5,6 in his pioneer-

ing work, and we will state what these are as we go along. Our model

is specialized for a protein, even though some of the ideas we intro-

duce here may find applications elsewhere. Unlike a protein with myr-

iad interactions, a virtue of our emergent model is its sheer simplicity.

Our goal is to capture the common characteristics of globular proteins

in a tractable coarse-grained model whose assumptions are clearly

stated and whose consequences can be deduced straightforwardly.

We validate the model by exploring its predictions and benchmarking

them with data.

Our model of a chain is inspired by past path-breaking studies.

Hard spheres, each with the same radius, are the simplest emergent

entities for modeling matter. The centers of a pair of spheres that just

touch each other are separated by a distance equal to the sphere

diameter. In the thermodynamic limit (when the number of spheres is

infinitely large), one arrangement, which maximizes the number of

pairs that just touch, is a face-centered-cubic (fcc) crystal67–69 with

each sphere touching 12 others. An optimal arrangement at one loca-

tion will be optimal at any other and this leads to periodicity and

translational invariance, signatures of a crystalline phase. Maximizing

the packing fraction can be thought of in this context as being equiva-

lent to a space-filling configuration.

In the protein arena, Corey, Pauling, and later Koltun, pioneered

the use of a calotte space-filling model, now called the CPK

model,70,71 in which the atoms are represented by spheres. The

notion of space-filling was also explored in detail by Richards,72–74

who highlighted the relationship between a space-filling native state

2 BANAVAR ET AL.

 10970134, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26567 by U

niversità C
a' Foscari V

enezia, W
iley O

nline L
ibrary on [16/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



structure and the desire to occlude any hydrophobic surface from the

surrounding water.

Figure 1A shows the packing of the protein myoglobin as viewed

in a CPK model. The beauty and simplicity of protein structure are

underscored in Figure 1B showing, that lurking underneath this com-

plexity, the chain of backbone Cα atoms wends its way through struc-

tured helices linked by loops. Figure 1C,D shows the same protein

structure in a tube representation. The tube has been drawn with a

diameter of 5.26 Å corresponding to the prediction of our theory that

we will present later in the paper. All but a few heavy backbone atoms

are completely enclosed within the tube (Figure 1C). The atoms of the

larger side chain atoms sticking out of the tube are seen in Figure 1D.

Many of the atoms of the smaller side chains are completely enclosed

within the tube. The situation in proteins is more complex compared

to Kepler's packing of cannonballs67–69 or a grocer's packing of apples

because of the distinct sizes of the atoms and the tethering between

them. As noted by Richards,73 “for chemically bonded atoms the

distribution is not spherically symmetric nor are the properties of such

atoms isotropic”.

2.2 | Curation and data analysis

Our data consists of 4391 PDB structures, a subset of Richardsons'

Top 8000 set75 of high-resolution, quality-filtered protein chains (res-

olution <2 Å, 70% PDB homology level), that we further filtered to

exclude structures with missing backbone atoms, as well as amyloid-

like structures. For the analysis of protein helices presented here, we

identified 3594 nonoverlapping segments 12-residues long with

coherently placed backbone hydrogen bonds between residue i and

both i � 4 and i + 4 within the segment. For the analysis of protein

β-sheets we identified 8422 antiparallel pairs of strands, by detecting

three inter-pair hydrogen bonds at (i,j), (i + 2,j � 2), and (i � 2,j + 2),

with i and j belonging to the two strands, respectively; 4542 parallel

strand pairs were identified by four inter-pair hydrogen bonds

between (i,j � 1), (i,j + 1), (i + 2,j + 1), and (i � 2,j � 1). Double count-

ing of the pairs was carefully avoided. Hydrogen bonds were identi-

fied using DSSP (CMBI version 2.0).76

2.3 | Details of computer simulations

We have employed two distinct Monte-Carlo methods in our simula-

tions to obtain ground state conformations of our model: microcano-

nical Wang–Landau (WL) simulations77 and replica exchange

(RE) (or parallel tempering) canonical simulations.78 We used both

methods to check for consistency. Our primary goal was to explore

low-lying conformations of our model and so we used the WL method

without the cut-off for the energy histogram. The acceptance proba-

bility in the WL ground state search is chosen to promote moves

exploring less populated energy states. The RE approach consists of

canonical simulations in parallel over a wide range of temperatures

that bracket the “transition temperature” between the folded and

unfolded states, while concentrating in the low-temperature region to

search for low-lying states. Each simulation provides a replica of the

system in thermal equilibrium. The swapping of replicas allows for

rapid search. Both methods employed standard local moves including

crankshaft, reptation, and endpoint moves along with the nonlocal

pivot move and yielded consistent results.

3 | RESULTS AND DISCUSSION

3.1 | Holding hands in a helix

We model the backbone of a protein as a chain of Cα atoms with a

constant bond length b of 3.81 Å.79 Our initial focus will be just on

the backbone atoms and their role in the sculpting of the building

blocks. We identify the Cα atoms with the labels 1, 2, 3… i � 1, i, i

F IGURE 1 (A) Native state of myoglobin (PDB code: 3RGK) in the
CPK representation in which all heavy atoms of the protein backbone
and its side chains are represented as spheres with radii equal to their
respective van der Waals atomic radii. Color code: carbon (cyan),
oxygen (red), nitrogen (blue), and sulfur (yellow). (B) Peering beneath
the complexity. The myoglobin native state structure is shown in
ribbon representation (in purple) with cyan spheres, shrunk in size for
the sake of clarity, at the positions of the Cα atoms. (C) The myoglobin
structure shown in a tube representation (also in purple) with the tube

diameter chosen to be the theoretically predicted value of 5.26 Å. The
backbone oxygen atoms (red spheres) not entirely enclosed by the
tube are visible. (D) The same tube representation but this time
depicting the backbone and side chain atoms not fully enclosed by
the tube.

BANAVAR ET AL. 3
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+ 1…. Each internal site i has two special directions, one from i to i � 1

and the other from i to i + 1. The local direction of the chain breaks the

spherical symmetry and leaves, in the simplest scenario, a residual cylin-

drical symmetry that is preserved by a coin rather than a sphere. There-

fore, the simplest geometry of objects with the correct symmetry at site

i is a pair of intersecting coins of uniform radius Δ and infinitesimal

thickness, both centered at i. The uniform radius assumption is justified

because all proteins share the same backbone independent of the side

chain specificity (with proline and glycine being the exceptions). The

normal directions of the two coins at site i are chosen to indicate the

directions to the nearest neighbor sites of i.

Following Pauling,5,6 we wind our chain into a helix. We treat the

residues as being equivalent, ignoring the differences in the side

chains, which are not our current focus for understanding secondary

structure formation. To go from one residue to the next, one would

rotate about the helical axis by an angle ε0, while simultaneously

translating along the axis by the rise per residue p (see Figure 2 for a

sketch). For a fixed bond length b, a helix is completely characterized

by ε0 and p. The translation along the axis for a complete turn of 360�

is the pitch of the helix P. A generic helix is three dimensional and is a

curve with a constant radius of curvature.80 However, for ε0 = 180�,

the helix becomes a zig–zag two-dimensional strand. Defining the

helix radius to be R, the Cartesian coordinates of the points lying

along a helix are, with integer n,

xn ¼R cos n�1ð Þ ε0ð Þ

yn ¼R sin n�1ð Þ ε0ð Þ

zn ¼P n�1ð Þ ε0= 2πð Þ

The radius of curvature of a continuous helix is given by:

Rcurv ¼R 1þη2
� �

,

where η = P/(2πR).

Pauling and his collaborators5 determined a hydrogen-bonded

helical configuration for the polypeptide chain. Here we follow in

Pauling's footsteps, but inspired by Kepler, we now adopt a geometri-

cal approach to find an optimal helix (we denote this as a Kepler helix)

in which every coin in the interior of the helix just touches another

backbone coin with the centers of the partner coins separated by a

distance exactly equal to the coin diameter 2Δ (Figure 3).

Figure 4 is a sketch of the unique Kepler helix for the case in

which the two coins at site i just touch partner coins closest

in sequence along the chain, one at i � 3 and the other at i + 3, for

every i in the helix interior. More specifically, the coin at (i � 3) with

its direction pointing toward (i � 4) just touches the coin at i with its

direction pointing toward (i + 1). Likewise, translating by 3, the coin

at i with its direction pointing toward (i � 1) just touches the coin at

(i + 3) with its direction pointing toward (i + 4). There is a steric con-

straint on coins along the helix that the centers of pairs of coins at dis-

tinct sites (that are not nearest neighbors) are spaced farther apart

than the (i,i + 3) distance.

In the continuum limit, the Kepler helix becomes the space-filling

helical conformation of a tube.16 There is then an equality of the

radius of curvature of the helix and the minimum nonlocal three body

radius (a measure of the closest approach of two parts of a tube) signi-

fying space-filling. The two coins at site i now overlap completely. A

tube may be viewed as a chain of coins in the continuum limit (the

coins maintain their radius Δ but get closer and closer to each other)

with Δ = Rcurv. To get a space-filling continuum helix, one would take

a tube and bend it as tightly as possible locally while avoiding any kink

and place successive turns on top of and alongside each other. There

are no intersections and when viewed from the top, there is no hole

in the middle. Nor is there any space between successive turns. In the

continuum limit, the bond length tends to zero, the bond bending

angle, θ, tends to 180�, the rise per residue, p, approaches 0, and the

rotation angle, ε0, tends to 0. One can only deduce the key geometri-

cal dimensionless pitch to radius ratio in the continuum case, but not

other relevant quantities like the coin radius, because there is no char-

acteristic nontrivial length scale like the bond length.

We will choose Δ = Rcurv leaving us with just one characteristic

length scale in the Kepler helix. Simple geometrical considerations*

F IGURE 2 Sketch of a discretized helix with uniform bond length
between successive points. The figure shows the rotation angle per
bead ε0, the rise per bead p, the helix pitch P, and the helix radius R.

*In earlier work,36 we had derived the characteristics of a discrete space-filling helix with η

fixed and equal to that of the corresponding continuum helix and finding the best fit ε0 for

fulfilling the same conditions imposed here. These conditions were derived, not directly, as

here, from consideration of the touching of coins but from the constraints inherent in the

continuum helix. Remarkably, the results reported earlier are in excellent accord with those

determined here correctly with the actual η value differing from the continuum counterpart

by less than a percent.

4 BANAVAR ET AL.
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dictate that, for every i, the (i � 3,i) distance is equal to the coin diam-

eter 2Δ and the [(i � 3),i,(i + 1)] and [(i � 4),(i-3),i] angles both equal

90� (see Figure 4). The centers of coins at noncontiguous points are

farther apart than 2Δ and cannot intersect. This is what we refer to as

handholding in a helix with each Cα atom having two hands (coins)

and every hand in the helix interior holding another hand. The side-

chains stick out in the approximately negative normal direction and

stay out of the way of the backbone atoms and each other in the Kep-

ler helix.

We note the accord between the parameters characterizing the

Kepler helix, the Pauling hydrogen-bonded helix, and protein helices

(see the upper half of Table 1). The Kepler helix is not space-filling

(one would need an infinite number of two-dimensional coins to fill

three-dimensional space). The local bond bending angle of the Kepler

helix, θ, is found to be around 91.8� suggesting that the minimum ste-

rically allowed bending angle, θmin, ought to be smaller than but close

to that value. Of course, the spread in the geometries of the 20 amino

acids, especially the presence of small amino acids like glycine, ought

to allow for tighter bending, facilitating turns in the protein structure.

We can estimate from the steric requirement, the (i,i + 2) dis-

tance must be greater than 2Δ, that θmin = 2 sin�1(Δ/(2b)) �87.3�.

The coin radius Δ is deduced to be around 2.63 Å for the Kepler helix

from our calculations. Δ is also equal to the radius of curvature of the

Kepler helix and the tube radius. Remarkably, Pauling's hydrogen bond

analysis and the purely geometrical deductions yield consistent results

for the helix geometry. As a bonus, we can determine the coin (tube)

radius Δ and the tightest bond bending angle θmin, with no additional

assumptions, from the properties of the Kepler helix. Figure 1 illus-

trates that the theoretically predicted value of Δ �2.63 Å provides

enough space to hold the backbone atoms and atoms of the smaller

sidechains within it.

Protein helices are predominantly right-handed because the

amino acids themselves are left-handed. This chiral symmetry break-

ing originates from steric clashes of oxygen backbone atoms with the

side chain atoms in a left-handed helix.51 We note that, just like in the

Pauling analysis, there is no spontaneous chiral symmetry breaking in

our model. Operationally, one can break the symmetry by hand as we

will, in our simulations, to exclude extended left-handed helices.

It is useful to recapitulate what we have done. We started with a

discrete chain of uniform bond length 3.81 Å curled into a helix and

did not consider the role of side chains. We assigned two coins, each

having a radius equal to the helix radius of curvature, to each interior

site with their normal vectors pointing toward its neighbors. We then

determined both the geometry of the optimal Kepler helix and thence

the coin radius by requiring that every coin in the helix interior

touched a partner coin three apart along the sequence and that (i,i

+ 3) was the closest noncontiguous pair along the helix. There were

no other assumptions or adjustable parameters. The Kepler helix is in

F IGURE 3 Sketches of touching coins and the constraint on the distance between coin centers. Figure 3A,B shows the canonical touching of
a pair of coins. The main difference is that in the first panel, the two coins lie in a plane whereas in the second they do not. In both cases, the
distance between the coin centers equals the coin diameter. Figure 3C depicts an example of two coins just touching but with the distance
between their centers less than the coin diameter. We do not consider such conformations here as legitimate touching. Figure 3D is an
illustration of the geometrical criterion for determining the closest distance between two skew lines (the ones depicted in Figure 3B) highlighting
the need for both distance and angle constraints. In practice, for Kepler handholding in a discrete helix, the (i,i + 3) distance ought to be equal to
the coin diameter and the (i,i + 3) straight line needs to be perpendicular to both the (i � 1,i) and (i + 3,i + 4) straight lines. These types of Frenet
constraints were studied earlier by Hoang et al.20 and form the basis of computer simulations in that work and here.

BANAVAR ET AL. 5
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good accord with the Pauling helix and protein helices. There is no

reason why this should necessarily be the case, and this may very well

be coincidence. But we will take this accord seriously and explore

other consequences here by building on the Kepler helix idea.

The analysis of the optimal helix teaches us several lessons. Each

backbone Cα atom is endowed with two hands corresponding to the two

coins. This sets a limit on the maximum number of backbone-backbone

interactions of the coin-touching type at 2 per each Cα atom. In the geo-

metrical analysis, the Kepler coin touching occurs precisely between the

i and i � 3 Cα atoms. The hydrogen bonding at the backbone level origi-

nates from two spatially separated hands: a donor ( NH amide group)

and an acceptor ( C O carbonyl group) in the peptide main chain. The

handholding in chemistry entails hydrogen bonding between the back-

bone donor group of a given amino acid and the backbone acceptor

group of the amino acid located four residues earlier along the protein

sequence. This marriage between geometry and chemistry leads to an

accord between the Kepler helix and the Pauling helix.

It has been pointed out by Rose8 that “all globular proteins (with

the occasional exception of small, metal-binding polypeptides or

those stabilized by disulfide bridges) are built on backbone scaffolds

of α-helices and/or strands of β-sheet, the only two conformers

where, with minor exceptions, the number of donors and acceptors

is exactly balanced.” Armed with this insight, we now turn to an anal-

ysis of touching coins within the second building block of a sheet,

transferring knowledge from the Kepler helix of the coin

radius Δ = 2.63 Å.

F IGURE 4 Sketch of the Kepler helix (see Video S1). The two
coins (in red and in blue) at bead i are shown. One coin is shown for
bead i � 3 (in red) and for i + 3 (in blue). These touch the two coins at
bead i. The pair of blue coins touch each other as do the pair of red
coins. The distances of 2Δ (the coin diameter) and the angles of 90�

characterizing the geometrical conditions of touching are indicated.
Every pair of noncontiguous coins that do not touch is farther than
2Δ from each other and therefore does not intersect.

TABLE 1 Comparison of the geometries of the building blocks derived from the Kepler analysis, Pauling's hydrogen bonds, and a study of
protein native state structures.

Kepler helix Pauling helix Protein helices

Rotational angle ε0 (�) 99.8 97.3 99.1 ± 3.4

Rise per residue p (Å) 1.58 1.47 1.51 ± 0.08

2Rcurv (Å) 2Δ = 5.26 5.32 5.25 ± 0.28

Kepler anti-parallel strands Antiparallel β-sheets in proteins

d(i,j) (Å) 2Δ = 5.26 5.26 ± 0.20

d(Mi,Mj) (Å) <2Δ 4.31 ± 0.22

Kepler parallel strands Parallel β-sheets in proteins

d(i,Mj) (Å) 2Δ = 5.26 5.26 ± 0.16

d(Mi,j) (Å) <2Δ 4.90 ± 0.31

Note: The bond length b = 3.81 Å. Our theory predicts Δ of around 2.63 Å. (Upper half ) Comparison of the geometries of the Kepler helix, the Pauling

helix (α-helix with 3.7 residues per turn), and protein helices. All attributes of a helix can be deduced from the bond length b, the rotation angle ε0, and

the rise per residue p. The table also shows the value of twice the radius of curvature of the helix, 2Rcurv = 2R(1 + η2), which is a measure of coin

diameter in our theory. The geometries of the Kepler helix and the Pauling helix are compatible with each other and with empirical data, within the error

bars. The Pauling helix is derived using input of quantum chemistry unlike the Kepler helix. (Bottom half ) Comparison of the geometries of the two

types of arrangements of Kepler strands and the geometries of parallel and antiparallel β-sheets in proteins. In the case of the anti-parallel Kepler

strands, the pair of touching coins (whose centers are beads i and j, see Figure 5B) are of the same color, while in the case of the Kepler parallel strands,

the pair of touching coins (having the centers at points i and Mj, see Figure 5C) are of different colors. Mj is defined to be the geometrical center of

beads at positions j � 1 and j + 1 (see Figure 5B,C). Note that unlike the uniaxial helix, a zig–zag strand is biaxial (see text below and Figure 5B,C). This

flexibility permits an effective squeezing of strands in a sheet thereby promoting more compact packing while yet maintaining the touching conditions

between the coupled axes. This squeezing is reflected in a smaller mean distance d(Mi,Mj) compared to the mean distance d(i,j) in antiparallel sheets (i

and j belong to the coupled axes in the antiparallel case), as well as in a smaller mean distance d(Mi,j) than the mean distance d(i,Mj) in parallel sheets

(here i and Mj belong to the coupled axes).

6 BANAVAR ET AL.
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3.2 | Holding hands in a sheet

A generic helix is three-dimensional. However, as noted earlier, when

the rotation angle ε0 = 180�, the helix becomes a zig–zag two-

dimensional strand (Figures 5 and 6). In a helix, the handholding was

local, sequentially separated by 3. The resulting Kepler helix is rigidly

constrained. There ought to be more latitude within a sheet. First,

unlike a tightly curled helix, the bond bending angle θ no longer needs

to be as tight. In fact, θ tends to be large and exhibits considerable

variation.79 Similarly, there is some small variability around 180� in

the dihedral angle μ79 ensuring local planarity yet allowing for the

strand to twist. The price paid for this flexibility is that a strand needs

partner strands to hold hands with and this is necessarily nonlocal.

But, unlike in a helix, one might hope that there can be coordinated

hand-holding in a sheet (Figures 5 and 6). Figure 5A shows a pair of

identical ideal strands a distance 2Δ apart. The directions of the pair

of coins at sites i and j are toward their neighbors, exactly as in the

helix. Each of the two coins at site i touch the two coins at site j.

The structure is an idealized version of a β-hairpin in which the two

strands run antiparallel to each other.

Nature is clever and she throws us a curveball by coming up with

variations to accommodate parallel strands in addition, provide flexi-

bility, and enable squeezing and compaction. A strand within an ideal-

ized sheet is strictly two-dimensional and can be divided into two

sub-lattices made up of every other Cα atom (Figures 5B,C and 6).

Each sublattice forms a straight line which can be thought of as the

axis of a straight tube or cylinder.

Nature adapts our assumptions pertaining to coins in a helix to

the strand case, where she now works with every other site and

straight axes. Because of the straight-line geometry of an axis, the

two coins at a given site merge into a single coin—the (i,i � 2) direc-

tion coincides with the (i,i + 2) direction in an ideal strand. Noting that

there are two distinct axes associated with a strand and two identical

hands at the same location is superfluous, Nature effectively retains

one coin at site i and moves the other coin with the same orientation

to site Mi (defined as the mid-point of i � 1 and i + 1, which lies on

the other axis not passing through i; Figure 5B,C). In this way, the site

i can now act as a representative of either axis of the strand either

through itself or its virtual image Mi. The coin-touching condition is

exactly as before with the two pairing axes (one from each partner

strand) being parallel and 2Δ apart (Figures 5B,C and 6A).

A strand utilizes one of its axes for pairing with a partner strand

with the other axis available for a second handholding partner axis or

being free and unencumbered. Such flexibility permits an effective

squeezing of strands in a sheet thereby promoting more compact

packing while yet maintaining the touching conditions between the

coupled axes (Figure 6D). This is in fact what is observed in proteins

(see the bottom half of Table 1). More fundamentally, the biaxial sheet

has greater flexibility than in a helix allowing for the structure to clev-

erly adjust the lengths of hydrogen bonds, the degree of squeezing,

and the dihedral angles determining the local twists in a strand81–84 to

accommodate favorable interactions, including those between side-

chain atoms.

We predict that the displacement between adjacent zig–zag

strands, tracking and in phase with each other, can take on a value of

either 2Δ (for antiparallel strands, see Figures 5B and 6A) or a smaller

value depending on the strand bond bending angle (for parallel

strands, see Figures 5C and 6B and the bottom half of Table 1). In the

antiparallel case, as in a hairpin, the donor on one strand can adjust to

face an acceptor on another allowing for horizontal ladder-like

F IGURE 5 Distinct possibilities for the coordinated handholding for a pair of identical ideal strands. (A) A pair of strands a distance 2Δ apart
with associated pairs of coins (shown in orange color) at sites i and j that are oriented toward their neighbors along the chain (i � 1 and i + 1, for
bead i, and j � 1 and j + 1, for bead j), exactly as in the Kepler helix. Each of the two coins at site i touch the two coins at site j. The (i � j) distance
is 2Δ. (B) The same structure as in (A). Unlike the uniaxial helix, a zig–zag strand is biaxial. Each strand has two axes. The blue axis of the left
strand goes through sites (i � 1, Mi, i + 1) whereas the red axis passes through the points (i � 2, i, i + 2). Here Mi is the mid-point (i � 1,i + 1).
The red coins of i and j touch each other as do the blue coins at Mi and Mj. The (i � j) distance is again 2Δ. (C) A distinct conformation of the two
strands. The red coin at i just touches the blue coin at Mj. The (i � Mj) distance is now 2Δ and the (i,j) distance is smaller. Conformations (B) and
(C) correspond to idealized antiparallel and parallel arrangements of strands.

BANAVAR ET AL. 7
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hydrogen bonds. In contrast, for the parallel case, a donor is necessar-

ily across another donor and thus one must have zig–zag hydrogen

bonds allowing for a strand separation of less than 2Δ to accommo-

date the same hydrogen bond length. For the antiparallel case, a coin

at i touches one at site j directly across it, whereas for the parallel

case, the coin at i touches the coin at Mj (Figure 5B,C). In the two

cases, the (i,j) and the (i, Mj) distances are predicted to be 2Δ or

5.26 Å, respectively (see the bottom half of Table 1). As in the helix,

the sidechains stay out of the way in the sheets and do not play a role

in the consideration of the backbone coins holding hands.

We have rationalized the formation of the common building

blocks of all proteins by imposing specific geometrical constraints

involving the backbone atoms of a protein. We have sought to maxi-

mize systematic handholding of pairs of uniform-size coins of radius Δ

with well-defined orientations (for the helical case) or the pairs of

strand axes (for the sheet case). We will show in a companion paper

that the theoretical underpinnings as well as the geometries of the

protein building blocks are in good accord with protein data. Our

results suggest that not only hydrogen bonds, but also holding hands

support the formation of both helices and sheets. The fundamental

lesson is that, in the building blocks, holding hands heightens happi-

ness, as in real life.

3.3 | Poking contacts and nestling promote
assembly of tertiary structure

Unlike unconstrained objects, the location of an object must be sup-

plemented with information about its context within the chain. If two

objects along a chain happen to be close to each other, that does not

necessarily mean that they have an affinity to each other—proximity

does not equate to affinity. This is readily obvious for the case when

two particles happen to be tethered next to each other along the

chain. Their proximity does not imply anything about their liking each

other or not. Likewise, if two particles from different parts of a chain

are close by, that could very well be because the true affinity is

between one of the particles and a neighbor along the chain of the

other particle.

The backbone coin interactions of the backbone atoms were sim-

ple to deal with because we used coins all the same size with known

orientations. Following Kepler and Pauling, we were able to work out

the geometries of backbone conformations that allowed for the sys-

tematic touching of coins. The situation is murkier for interactions

mediated by sidechains. This is because side chains have a range of

geometries and chemistries and there is not any simply defined,

let alone universal, object or orientation describing all of them. Fur-

thermore, the plethora of interactions at the sidechain level makes the

situation truly complex. The outcome of this complexity is neverthe-

less a simpler physical picture of compatible and complementary side-

chains nestling together availing of their mutual attraction while

aiming to exclude water from the hydrophobic core.

To capture this complexity in a simple, albeit approximate, man-

ner, we will glibly continue to ignore side chains and introduce the

concept of poking pairwise interactions between Cα atoms i and j,

located at ri and rj, respectively, satisfying the distance, d(i,j), criteria:

d i, jð Þ< d i, j�1ð Þ

d i, jð Þ< d i, jþ1ð Þ

d i, jð Þ< d i�1, jð Þ

d i, jð Þ< d iþ1, jð Þ

(Figure 7). These poking contacts identify significant pairwise

interactions in a protein and indicate true affinity between i and j. As

seen in Figure 7, i and j protrude toward each other and are prime

candidates for touching in comparison to the four other nearby pairs

(i,j � 1), (i,j + 1), (i + 1,j) and (i � 1,j). Indeed, in the Kepler helix, every

(i,i + 3) contact is a poking contact. Also, in an idealized sheet com-

prising in-phase strands alongside and tracking each other, there are

poking relationships between every pair of touching coins in both

F IGURE 6 Four geometries of a sheet comprising idealized
strands. In all cases, the axes coupled are orange–orange, green–
green, and purple–purple with a spatial separation of 2Δ. (A):
Antiparallel chains have spacings between the strand pairs equal to
2Δ. (B): Parallel chains have spacings between the strand pairs now
closer than 2Δ. This is because the pairing axes go through the
“mountains” on one strand and “valleys” on the other. (C) Mixed
arrangement of four ideal strands. Antiparallel strand spacings are
again 2Δ but the spacing between parallel chain segments 2 and 3 is
less. (D): Antiparallel arrangement of four strands that depicts the
squeezing of the sheet promoting its compaction while yet respecting
the touching conditions. The red point in the second strand from the
left is now closer to the corresponding purple point in strand 3 from
the left than 2Δ unlike in (A). Interestingly, the hydrogen bonding
patterns are ladder like for antiparallel chain segments and zig–zag for
parallel chain segments accounting for the distinct distances

between axes.

8 BANAVAR ET AL.
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parallel and antiparallel pairing. Indeed, common sense dictates that

two parts of chain that are strongly attracted to each other must poke

toward each other. This is a necessary corollary for a chain topology

and is not relevant or even defined for unconstrained particles.

We have analyzed 3594 α-helices, 8422 antiparallel pairs of

β-strands, and 4542 parallel pairs of β-strands in 4391 proteins of our

data set (see Section 2.2) and have found that the presence of hydro-

gen bonds in the interior of the common building blocks of proteins

are associated with poking interactions in �97% of cases in α-helices,

�95% of cases in antiparallel pairs of β-strands, and in �99.9% of

cases in parallel pairs of β-strands.

Here we will postulate that the complex interactions mediated by

sidechains can be approximately captured as the sum of emergent

pairwise poking interactions between the backbone Cα atoms within a

range of 12 Å, which are not involved in the formation of the common

building blocks of protein structures (Figure 8). We will choose the

simplest option of merely counting the number of such poking pair-

wise interactions and assign each of them a happy energy of around a

fifth of a handholding pair. The range of 12 Å is determined as roughly

twice the size of the largest sidechains. We have verified that our

results are essentially independent of the precise value of this range.

Poking contacts also play a vital role in a context unrelated to

proteins when one has a hard-core constraint on the closest approach

of two segments of a chain. To ensure self-avoidance, one would look

for all poking contacts and ensure that the pairwise distance in the

closest one among these is no smaller than the hardcore constraint.

There is a vexing problem pertaining to ensuring self-avoidance of a

continuum chain, where local particles along the chain are necessarily

very close to each other because of the tethering. Any pairwise

potential with an energy penalty for too close an approach between

particles would simply not work in the continuum limit because of the

large number of close by contiguous contacts along the chain. This

problem can be deftly solved by discarding a pairwise potential and

instead employing a three-body potential.16

Poking interactions provide an alternative way of addressing this

problem. Starting from any point on a chain (continuum or discrete),

F IGURE 8 Nestling of side chains in the native state of myoglobin (PDB code: 3RGK). Both panels show the seven myoglobin helices
(in purple) and its loops (in black). The atoms are drawn in CPK representation, in which the radii of the spheres correspond to the van der Waals
radii of the respective atom types. Color code: backbone carbon atoms (orange); sidechain atoms: carbon (cyan), nitrogen (blue), oxygen (red), and
sulfur (yellow). We begin by identifying the poking pairwise contacts between backbone Cα atoms within 12 Å, excluding contacts between Cα

atoms belonging to the same helix. We define a nest as a region in which the collection of sidechain atoms of the partner Cα atoms can nestle.

Panel a) shows two nests formed by the poking contacts of residue VAL-13 and LEU-40. In both cases, the number of Cα atoms involved in the
nest is 7. The number of relevant poking contacts are 11 and 15 for VAL-13 and LEU-40, respectively. (B) 17 nests of size 7 and 8 (other nests
are smaller), altogether comprising 46 of 149 amino acids in the myoglobin protein chain. The 17 nests originate from poking contacts from
6 LEU, 2 ALA, 2 MET, 2 PHE, 2 VAL, 1 TRP, 1 ILE, and 1 GLY residue and involve 190 poking contacts in all. LEU, ALA, VAL, ILE, and GLY are
aliphatic; TRP and PHE are aromatic; and MET contains sulfur. The side chain atoms of the nestling amino acids are predominantly hydrophobic
carbon and sulfur atoms. The exceptions are several oxygen and nitrogen atoms which either poke out toward the water or are compensated by
poking toward another oppositely charged entity.

F IGURE 7 Illustration of two snippets of a chain depicting a
poking pairwise contact between i and j. i is closer to j than to the two
neighbors of j and likewise for j.

BANAVAR ET AL. 9
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the spatial distance when plotted against sequence separation can

exhibit local minima at nonzero sequence separation, which signal

poking interactions, as long as there is reciprocity. The geometry of

such a graph can be used to separate out local and nonlocal contacts

along a chain with all contacts within the first maximum being local.

Such local contacts are a natural attribute of any chain and do not

have to be accounted for while dealing with self-avoidance.

There are two significant advantages of poking contacts in a chain

context. First, they are entirely compatible with the interactions used

for the construction of building blocks—there is no frustration† in the

nature of the interaction. Second, in the building blocks, there were

just two hands available for holding, thus permitting anisotropic struc-

tures like the one-dimensional helix and strand and the two-

dimensional sheet. Even in the assembly process, the socialist nature

of indiscriminate interactions with everyone interacting with everyone

else who is close by, is replaced with a manageable number of emer-

gent poking interactions. This simplifies the model and ties the rele-

vant interactions directly to the geometry of the structure. The

concept of poking interactions in the polymer field and their utility in

protein science at all levels of assembly (secondary and tertiary struc-

ture) has not been considered before.

We end this section with a recapitulation of the key ideas. We

show that the helix and the sheet both result from handholding of the

coins associated with the backbone atoms. This imposes certain geo-

metrical constraints on the sites containing the paired coins. In partic-

ular, the handholding in both building blocks is associated with poking

pairwise interactions. The sidechains do not play a role in determining

the structure of the common building blocks. We suggest that the

assembly process, which is driven by sidechain interactions, can be

captured effectively as a sum of pairwise poking contacts of the Cα

atoms without worrying about sidechain specificity. We thus end up

with a homopolymer model and we will explore its energy landscape

further.

3.4 | Computer model of a protein chain

Armed with these insights, we turn to the simulation of a chain with a

uniform bond length, b, of around 3.81Å. b sets the length scale in the

problem and is chosen to match that of proteins to allow us to make

quantitative comparisons with protein data. We impose a constraint

on the local bond-bending angle that it cannot be smaller than θmin

�91�. We also require that no pair of Cα atoms can be within a

hard-core distance of around 4.5 Å (derived from the van der Waals

diameter of an isolated glycine amino acid85) from each other. We

have verified that our results are substantially independent of these

two choices.

The intra-helix contacts are pairwise poking contacts of the (i,i

+ 3) type with the correct constraints to ensure Kepler touching of

the coins. We impose soft constraints on the values of the dot

products ti�bi+3 and bi�ti+3, as well as the dot products ti�ri,i+3 and

ti+3�ri,i+3. Here ti and bi represent the tangent and binormal vectors

at bead i in the local Frenet system of coordinates80 and ri,i+3 is the

vector connecting beads i and i + 3. Specifically, we assign no

α-basin reward unless the dot products ti�bi+3 and bi�ti+3, as well as

ti�ri,i+3 and ti+3�ri,i+3, lie in appropriate ranges that are deduced from

the right-handed Kepler helix. The dot products ti�bi+3 and bi�ti+3 are

both required to lie between +0.156 and +0.325 allowing for ±5�

tolerance around the ideal angle of �76� between the corresponding

vectors. Likewise, the dot products ti�ri,i+3 and ti+3�ri,i+3 need to lie

in the range between +0.127 and +0.297, permitting a ±5� tolerance

around the ideal angle of �77.7� between the corresponding vectors

in the Kepler helix.

The zig–zagging of an individual strand is ensured by considering

the relative orientations of ni and ni+1, where ni is the normal vector

at site i.20 Ideally, these vectors ought to be antiparallel, but in our

simulations, we merely require that the angle between them is at least

120�. In addition, we require a nearly perpendicular orientation of the

connecting vector between i and j (that are nonlocal poking contacts,

with j > i + 3), rij, with both ni and nj to account for the geometries of

the paired axes in a β-sheet. In our simulations, we allow for a toler-

ance of ±5� around the 90� angle for ideal strands. Our computer

model is deliberately simplified for handholding in sheets. It corre-

sponds to Figure 5A and leads to ideal sheets. There is no distinction

between parallel and antiparallel strand pairing and there is no possi-

bility of squeezing.

In summary, our computer simulation model does away with coins

and is in the same spirit as that presented originally by Hoang et al.20

The common idea is to capture the features of protein native state

structures, independent of amino acid sequence, through suitable Fre-

net constraints within the context of a tube model. In Reference 20,

the soft constraints were determined primarily by a detailed analysis

of PDB data. Here again, we use empirical data (most notably that

naturally occurring helices are right-handed) but our constraints are

derived from theory of the Kepler helix and sheet and are not directly

based on protein data. Most importantly, our work is built on the

observation that poking contacts play a critical role in handholding in

helices and sheets along with our hypothesis that poking contacts

may be important in the assembly of the secondary motifs as well.

Our simulations are therefore strictly unrelated to proteins, they are

based on geometry and yet turn out to yield results like proteins.

Operationally, we assign all poking contacts within 12 Å with a

reward of �Eγ. We consider two special cases, exclusive of each

other, of poking contacts (i,j) that correspond to handholding within

the secondary structures, which we additionally reward. These (i,j)

poking contacts are predicted to have an ideal value of 2Δ = 5.26 Å.

In our simulations, we allow for poking contacts to be within 6 Å. The

first case is relevant for helix handholding and involves (i,i + 3) con-

tacts with soft constraints on the values of the dot products, ti�bi+3,

bi�ti+3 and ti�ri,i+3 and ti+3�ri,i+3. Such contacts are allocated an

†Our hypothesis is an application of a generalized principle of minimal frustration13 in a new

context. The standard application of the principle points out that protein sequence design

must be carried out thoughtfully to avoid frustrating tendencies in the amino acid

interactions. Here, we choose a simple pairwise interaction potential, that is, entirely

compatible with the formation of Keplerian helices and sheets with no frustrating tendency.

A generic indiscriminate attraction would violate the principle by destabilizing both a helix

and a strand.

10 BANAVAR ET AL.
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additional �(Eα � Eγ) reward. The second case involves (i,j) contacts

with j > i + 3, with soft constraints on the dot products ni�ni-1, ni�ni+1,

nj�nj�1, nj�nj+1, ni�rij, and nj�rij. These contacts are rewarded addition-

ally by an amount �(Eβ � Eγ).

Our homopolymer model has three kinds of favorable pairwise

interactions: helix handholding (with an energy score of �Eα = �1 for

each such contact), sheet handholding (with an energy score of

�Eβ = �1 per contact) and poking pairwise nestling interactions

within 12 Å that are not part of a helix or a sheet (with an energy

score of �Eγ = �0.2 per pairwise contact). The potentials employed

in our simulations are square wells.

We explore the conformation space of this model and determine

those conformations with overall large happiness or low energy score.

Except for boundary effects, the fully satisfied helix and sheet are

degenerate because each backbone Cα atom has two hands. Assem-

blies of one-dimensional helices and two-dimensional sheets accrue

favorable nestling contacts leading to protein-like modular assemblies

of helices and sheets connected by loops. There is a significant num-

ber of degenerate low-energy conformations, and we show four of

these in Figure 9. We do not preassign any given Cα atom to a helix, a

sheet, or to a nestling contact. A given atom selects the most

favorable accessible assignment, depending on its environment, spon-

taneously yielding the high degeneracy. All low-energy structures are

protein-like modular structures because of the energy balance

between the more favorable helix and sheet contacts and less com-

petitive nestling contacts. Heterogeneity in the chain will favor the

best-fit structure for the sequence over the other structures with

relative ease.

Figure 9 shows a few representative protein-like structures with

low-lying energies arising from our simulations. We obtain nearly

degenerate modular structures made up of building blocks of helices

and strands assembled into sheets. It is important to note that our

simulations were carried out for individual homopolymers, of modest

size 80, with no side chains. At moderate temperatures, we observe

frequent spontaneous switching between multiple low-energy

protein-like conformations, including ones not shown here. The

energy landscape is studded with numerous minima corresponding to

building blocks assembled with different topologies. That this happens

at the homopolymer level is at odds with the common belief that

sequence determines structure. Instead, as suggested earlier,20 the

sequence does not have the onerous task of sculpting a folding

funnel13–15 from scratch but rather merely needs to refine the pre-

F IGURE 9 Four low-energy structures with distinct topologies. We used parallel tempering to determine low-energy conformations for a
homopolymer chain of length 80. Starting from the upper left and proceeding in a clockwise direction, we show a five-helix bundle (5α), a β-sheet
structure (10β) comprised of two approximately parallel planes, each having 5 β-strands, a (2α + 5β) structure with two α-helices lying on top of a
β-sheet comprising five strands, and finally a. β-barrel structure, comprised of β-strands arranged in a cylindrical fashion. Helices are shown in
purple, β-strands in blue, and loops in light green. Structures are drawn in ribbon representation and the positions of Cα atoms are shown as
spheres. We show the corresponding contact maps alongside the structures. The color code employed in contact maps is blue for the Kepler helix
backbone-backbone poking contacts, red for the Kepler β backbone-backbone poking contacts, and dark green for the nestling poking pairwise
contacts within 12 Å. For clarity, we have shrunk the sizes of points representing the nestling contacts. The energies of the four structures are
approximately equal in magnitude (�84, �82, �86, and � 81) for Eα = 1, Eβ = 1, and Eγ = 0.2.

BANAVAR ET AL. 11

 10970134, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26567 by U

niversità C
a' Foscari V

enezia, W
iley O

nline L
ibrary on [16/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



sculpted landscape to enhance the fit of the sequence into the best

choice native state within the existing library of folds. The menu of

putative protein-like native structures has been computationally

explored in homopolymer chains employing atomistic force fields86–88

and density functional-based mean-field potentials89 and underscore

the secondary role of the sequence in sculpting the fold.

4 | CONCLUSIONS

The protein problem is inherently complex with thousands of atoms

tethered to each other surrounded by solvent molecules. There are

20 types of amino acids. There are numerous types of interactions.

And there is the ever-present role of evolution. Yet, within this com-

plexity, there is simplicity20 provided by the topologically limited num-

ber of protein folds determined by physical law, geometry, and

symmetry, in the backdrop of which sequences and functionalities are

shaped by evolution.

Here we study the geometry of native state structures of a chain.

Our analysis applies only to proteins because our assumptions are

specialized to this context. We use the fact that all proteins share the

same backbone except for glycine and proline. The backbone interac-

tions yield the well-known building blocks shared by all proteins. We

suggest that the assembly of building blocks may be captured by

means of poking pairwise contacts. We find that the geometries of

the building blocks and the tertiary structure of our simplified model

(Figure 9) are in good accord with those of real proteins.

The Kepler geometry model is general and incorporates poking

contacts capturing the touching of backbone coins with suitable Fre-

net constraints for the formation of the secondary motifs. Addition-

ally, it has flexible poking contacts (without any Frenet constraints) for

the assembly of the building blocks. Of course, a protein neither has

coins nor a requirement for Kepler touching. And, a priori, there is no

reason that the geometrical model must relate to a protein. After the

fact, we find remarkable similarities between the model and

the behavior of real proteins. This is because our assumptions are spe-

cialized to the protein context. Unlike conventional chain molecules,

here we have distinct sequences sharing the same backbone (except

for glycine and proline), the backbone forms helices and sheets

through hydrogen bonding, and the sidechains select the native state

structure from the pre-sculpted menu of folds.

Our analysis is in the same vein as Kepler's study of the packing

of cannonballs in the hold of a ship (or the equivalent problem of how

a grocer ought to pack her apples).67–69 Kepler correctly conjectured

that no structure was better than the fcc structure for the packing and

space-filling of spheres. A sphere is isotropic and changing the sym-

metry to study the packing of cubes instead results in an optimal sim-

ple cubic lattice structure. This underscores the key role played by

symmetry in space-filling. Idealized crystals are space-filling, infinite in

extent, and periodic. What works at one location works at another

leading to translational invariance.

Our analysis here corresponds to a study of the Kepler-like con-

formations of a finite-sized chain, accounting for symmetry and

geometry information whenever available, and can explain the com-

mon characteristics of all globular proteins. Thus, in a very real sense,

the protein structure problem has the same ingredients as the

centuries-old problem of a grocer arranging her apples.

We conclude by celebrating the uniqueness of proteins. First,

despite their modest sizes, proteins exhibit many common characteris-

tics. This is distinct from universality in critical phenomena90 where, in

the long-length scale limit, many details become irrelevant and power

law behavior has universal exponents. Thus, when the dimensionality

and the symmetry of ordering are the same, many details are irrelevant

and disparate systems such as a liquid–vapor critical point, a binary

alloy at the onset of ordering, and a spin system with up-down symme-

try on a three-dimensional lattice at its ordering temperature all exhibit

the same critical behavior. In contrast, the common characteristics of

proteins arises because all proteins have the same backbone and hand-

holding considerations at the backbone level. This leads to the same

building blocks for all proteins and to modular native state folds.

Proteins exhibit stability and diversity. A classic physics example

of such behavior is the spin glass phase91,92 where frustration (the

inability to satisfy all interactions simultaneously) results in a rugged

energy landscape characterized by many local minima.93 The diversity

of low energy states along with their individual stability has found

direct use in models of prebiotic evolution94,95 and content address-

able memories.96 Proteins also exhibit stability and diversity in the

pre-sculpted landscape of a homopolymer. These attributes do not

originate from frustration and a protein is not necessarily plagued by

sluggish dynamics associated with being trapped in a hugely rugged

landscape.97–99 Unlike a spin model (which is what a spin glass is), pro-

tein structures are actual three-dimensional sculptures, which directly

host and facilitate interactions within the living cell.

Like liquid crystals,67,100 proteins exhibit sensitivity. Liquid crys-

tals are sometimes referred to as the most sensitive phase of matter.

Enzymes are incredibly versatile and can speed up reactions by many

orders of magnitude. Unlike a liquid crystal built up of anisotropic con-

stituents like rods (see for example Reference 101) or banana-shaped

molecules, here the anisotropy is inherent because of the tethering

along a chain. Furthermore, the building blocks themselves are aniso-

tropic because of handholding, which is anisotropic. A chain provides

a powerful context of where an object is along it, not available in a liq-

uid crystal. Just as a liquid crystal derives its sensitivity by being

poised in the vicinity of a phase transition to the liquid state, here the

space filling conformations of coins in this finite sized system are

automatically poised in a marginally compact phase in the vicinity of a

swollen phase. The marginally compact phase is characterized by the

perfect match between the tube size (the coin diameter) and the inter-

action range for two coins just touching each other (also the coin

diameter). The sensitivity of proteins is underscored even in our rudi-

mentary simulations where a homopolymer dynamically switches from

structure to structure due to thermal fluctuations. Our work opens

the possibility of the creation of functional entities at the nanoscale,

based on ideas from geometry and symmetry, which can switch

reversibly between distinct geometries and exhibit novel emergent

behavior, when networked together.

12 BANAVAR ET AL.
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Pauling and his colleagues5 used “the complete and accurate

determination of the crystal structure of amino acids, peptides, and

other simple substances related to proteins …. to construct two rea-

sonable hydrogen-bonded helical configurations for the polypeptide

chain”. In an unrelated vein, Ramachandran and his colleagues showed

that the need to avoid steric overlaps of the backbone atoms permit

and promote the existence of helices and sheets.7,8 Here we have

used geometry and symmetry to show that helices and sheets can also

be viewed as arrangements of touching coins. Is this evidence for

fine-tuning in nature, which permits distinct approaches to converge

to the same results? Furthermore, the tube diameter, determined by

the details of the backbone atomic structure, is required to be fine-

tuned to a value of around 5.26 Å to facilitate the Keplerian building

blocks. The modularity of protein structures is a direct consequence

of the backbones of proteins shaping the building blocks. The virtually

perfect fit of quantum chemistry, for example, the planarity of the

peptide bond, the lengths of the covalent and hydrogen bonds, hydro-

phobicity, and steric constraints to be compatible with and promote

protein native state structures is striking. That geometry and symme-

try considerations yield the same structures is astonishing.

Proteins are unique in exhibiting stability, diversity, and sensitivity

with geometrically well-defined native state structures. Alas, they are

also able to aggregate and clump together as an insoluble amyloid.

The quantum chemistry approach for studying proteins, which is

surely correct albeit complex, and the simple Keplerian approach out-

lined here, which is a model and is therefore necessarily wrong, seem

to be compatible with each other. We hope that our model will prove

to be useful because of its simplicity. In future papers, we will present

details and comparisons of our predictions with data on globular pro-

teins, we will develop a simple picture of amyloid formation validated

by experimental data, and we will elucidate the critical role played by

side chains. An exciting recent development is the role of biomolecu-

lar condensates to create membrane-less compartments within a cell

through liquid–liquid phase separation, facilitated by protein–protein

and/or protein–RNA interactions.102 It is an intriguing possibility that

poking interactions may also play a role in this arena as well.
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